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Project Summary

(Summary of research carried out under ONR Grant No. N00014-91-J-1137.)

This document serves as the final technical report of ONR Grant No. N00014-91-J-1137.
During this project I examined what people learn from examples in domains that emphasize
solving quantitative problems. These domains would be areas such as algebra, probability,
and physics. A central focus of this work was to develop a scheme for usefully
representing the problem solving knowledge that one might acquire for a given domain.
This was achieved using the notion of subgoals, which, in the present work, are used to
represent the task structure for problems in a particular domain.

Subgoals show the higher-level structure that can be applied to a variety of problems that
differ at superficial levels as well as in the mathematical details needed to solve the
problems. Learners frequently focus on superficial aspects of examples and problems.
This focus often prevents these learners from solving novel problems, that is, problems
that cannot be solved by the same sequence of steps as in the training examples/problems.
However, if a useful subgoal structure can be identified by a researcher or teacher, and if
this structure can be conveyed to a learner, then the learner will be more successful solving
novel problems. This implies that a crucial early step in teaching problem-solving in a
domain is for teachers to spend time identifying to themselves the useful subgoals from a
novice's perspective. One way this can be done is to first identify a target set of problems
that the instructor wants the students to be able to solve. The instructor can then write out
solutions to these problems and analyze them to determine the subgoals achieved by groups
of steps that constitute the solution procedures to the problems.

A second focus of the research has been to find ways of effectively conveying subgoals to
learners through examples once those subgoals have been identified by the instructor. The
most effective technique found in the research has been to use manipulations that isolate

groups of steps in the examples that achieve a particular subgoal. This isolation appears to

attempts to self-explain why the steps go together. The result of such a self-explanation
process is a formation of a subgoal which can then be used in subsequent problems (even if
the exact steps for achieving the subgoal are different in those problems compared to the
example).

The project results suggest that training materials in problem-oriented domains should be
designed to emphasize subgoal learning. This approach could improve learners' transfer to
novel problems and situations. The project has also led to new work (with Department of
Defense collaborators) on the application of the subgoal approach to automated (computer)
training and tutoring environments.

The project has yielded a number of journal publications, proceedings papers, and
conference presentations that are listed following this summary.
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Project Publications and Reports
Journal Publications

Catrambone, R. (1995). Aiding subgoal learning: Effects on transfer. Journal of
Educational Psychology, 87 (1), 5-17.

Catrambone, R. (in press). Following instructions: The effects of principles and
examples. Journal of Experimental Psychology: Applied.

Catrambone, R., Jones, C., Jonides, )., & Seifert, C. (1995). Reasoning about
gl;r;ilinear motion: Using principles or analogy. Memory & Cognition, 23 (3), 368-

Catrambone, R. (1994). Improving examples to improve transfer to novel problems.
Memory & Cognition, 22 (5), 606-615.

Papers in Refereed Conference Proceedings

Catrambone, R. (1995). Effects of background on subgoal learning. To appear in
Proceedings of the 17th Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum.

Catrambone, R. (1994). Cognitive science meets cognitive engineering. Symposium in
Proceedings of the 16th Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum, 968-972.

Catrambone, R. (1994). The effects of labels in examples on problem solving transfer. In
Proceedings of the 16th Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum, 159-164.

" Catrambone, R. & Wachman. R.M. (1992). The interaction of principles and examples in
instructions. In Proceedings of the 14th Annual Conference of the Cognitive Science
Society. Hillsdale, NJ: Erlbaum, 749-754.

Catrambone, R. (1991). Helping learners acquire subgoals to improve transfer. In
Proceedings of the 13th Annual Conference of the Cognitive Science Sociery.
Hillsdale, NJ: Erlbaum, 352-357. ,

Paper Presentations

Catrambone, R. (1995). Effects of background on subgoal learning. Paper to be
presented at the 17th Annual Conference of the Cognitive Science Society, Pittsburgh.

Catrambone, R. (1994). Cognitive science meets cognitive engineering. Symposium
presented at the 16th Annual Conference of the Cognitive Science Society, Atlanta.

Catrambone, R. (1994). The effects of labels in examples on problem solving transfer.
Paper presented at the 16th ‘Annual Conference of the Cognitive Science Society,
Atlanta.

Catrambone, R. (1994). The effects of labels on subgoal learning. Paper presented at the
35th Annual Meeting of the Psychonomic Society, St. Louis.
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Catrambone, R. (1994). Learning subgoals to solve problems. Paper presented at the
Office of Naval Research Grantees Meeting on Learning and Training, Chicago.

Catrambone, R. (1994). What in the heck are subgoals? Paper presented at the Fifth
Annual Winter Text Conference, Jackson Hole, Wyoming.

Catrambone, R. (1993). Conveying subgoals/subtasks to aid performance on novel
problems. Paper presented at the Fourth Annual Winter Text Conference, Jackson
Hole, Wyoming.

Catrambone, R. (1993). Effects of learning equations on transfer in mathematical
domains. Paper presented at the 34th Annual Meeting of the Psychonomic Society,
Washington, D.C.

Catrambone, R. (1992). Improving examples to improve transfer. Paper presented at the
Third Annual Winter Text Conference, Jackson Hole, Wyoming.

Catrambone, R. (1992). Producing better problem solving by making better examples.
Paper presented at the Lilly Endowment Teaching Fellows Conference, Callaway
Gardens, Georgia.

Catrambone, R., Jonides, J., & Jones, C.M. (1992). Reasoning about curvilinear motion:
Using principles or analogy. Paper presented at the 33rd Annual Meeting of the
Psychonomic Society, St. Louis.

Catrambone, R. (1991). The effects of labels on learning subgoals for solving problems.
Paper presented at the 1991 Annual Meeting of the American Educational Research
Association, Chicago, Illinois.

Catrambone, R. (1991). Helping learners acquire subgoals to improve transfer. Paper
presented at the 13th Annual Conference of the Cognitive Science Society, Chicago.

Catrambone, R. (1991). Learning from problem-solving examples. Paper presented at the
Office of Naval Research Grantees Meeting on Learning and Instruction, Atlanta.

Catrambone, R. (1991). Subgoal learning not aided by studying multiple methods. Paper
presented at the 32nd Annual Meeting of the Psychonomic Society, San Francisco.

Catrambone, R. (1991). Using labels to help learners acquire subgoals for solving novel
problems. Paper presented at the Fourth European Conference for Research on
Learning and Instruction, Turku, Finland.
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Problem Solving and Transfer.
University of New England, March 1995.

Learning Subgoals from Examples to Solve Problems.
College of Staten Island, New York, December 1994.
Oklahoma State University, February 1995.
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Improving Transfer to Novel Problems: The Use of Labels in Examples.

Armstrong Laboratory, Human Resources Directorate, Brooks Air Force Base, March
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Improving examples to improve
transfer to novel problems

RICHARD CATRAMBONE
Georgia Institute of Technology, Atlanta, Georgia

~ People often memorize a set of steps for solving problems when they study worked-out examples
'in domains such as math and physics without learning what domain-relevant subgoals or subtasks

" these steps achieve. As a result, they have troubl

e solving novel problems that contain the same

structural elements but require different, lower-level steps. In three experiments, subjects who stud-
ied example solutions that emphasized a needed subgoal were more likely to solve novel problems
that required a new approach for achieving this subgoal than were subjects who did not learn this
subgoal. This result suggests that research aimed at determining the factors that influence subgoal
learning may be valuable in improving transfer from examples to novel problems.

A number of studies have indicated that learners rely
heavily on worked-out examples when trying to solve
novel problems (e.g., LeFevre & Dixon, 1986; Pirolli &
Anderson, 1985). Unfortunately, in a domain, novices
have great difficulty separating the features of the ex-
amples that are necessary to the solution procedure from
those that are incidental (Ross, 1987, 1989). In addition,
learners have difficulty generalizing solutions from ex-
amples to structurally similar, but nonisomorphic, prob-
lems (Reed, Ackinclose, & Voss, 1990; Reed, Dempster,
& Ettinger, 1985). Although certain training manipula-
tions have succeeded in improving transfer from exam-
ples to novel problems to some degree (Lewis & Ander-
son, 1985; Zhu & Simon, 1987), in general, transfer has
not been impressive (e.g., Gick & Holyoak, 1983; Reed
et al., 1985; Ross, 1987, 1989).

Learners differ in what they extract from worked-out
examples. Chi, Bassok, Lewis, Reimann, and Glaser
(1989) found that good learners are more likely to try to
understand why a particular step was taken in a solution.
Good and poor learners, at least initially after studying a
physics chapter without examples, seemed to have a sim-
ilar level of declarative knowledge about mechanics.
However, when studying an example, the good learners
produced explanations that contained more “inferences
about the conditions, the consequences, the goals, and
the meaning of various mathematical actions described
in the example” (p. 168). Thus, good learners seem to get
more from examples, including a knowledge of goals,

This research was supported by Office of Naval Research Grant
N00014-91-J-1137. 1 thank Alana Anoskey and Elinor Nixon for their
help in coliecting and coding some of the data. I thank Dedre Gentner,
Marsha Lovett, Brian Ross, Tim Salthouse, and Neff Walker for their
comments on earlier drafts of this paper. Experiment 1 was reported
at the Fourth Annua! Winter Text Conference, January 1993, Jackson,
Wyoming. Address correspondence to R. Catrambone, School of Psy-
chology, Georgia Institute of Technology, Atlanta, GA 30332.

even when starting at a knowledge level similar to that
of poor learners.

The present experiments explore whether more learn-
ers can be turned into good learners by presenting them
with examples that convey the subgoals relevant for
solving problems in a domain. The term subgoal is used
here to represent the task structure to be learned for solv-
ing problems in a particular domain (e.g., Catrambone
& Holyoak, 1990; Dixon, 1987; Eylon & Reif, 1984). A
subgoal groups a set of steps under a meaningful task or
purpose (e.g., Anzai & Simon, 1979; Chi & VanLehn,
1991). I hypothesize that a person who has learned the
subgoal will be in a better position to achieve it in a
novel problem requiring a new or modified set of steps
than will someone who has not learned the subgoal.

Learning subgoals is assumed to enhance perfor-
mance because subgoals act as guides to the part or parts
of the procedure demonstrated in examples that need to
be changed for the current problem. Thus, subgoals nar-
row the space in which the solver has to search in order
to determine what must be changed. For instance, Simon
and Reed (1976) found that providing learners with a
subgoal—in the form of a hint to achieve a particular
state along the solution path in a problem involving mis-
sionaries and cannibals—aided their navigation through
the problem space. . ‘

In the probability materials used in the first two ex-
periments, one subgoal toward the overall goal of find-
ing a particular probability is to find the probability of
each of the individual events. If the steps for finding an
individual event probability in a novel problem are not
the same as those used in the example, then a person
who has learned the subgoal to find the individual event
probabilities will have a better chance of focusing on the
steps of the procedure that must be changed—the steps
involved in finding the individual event probabilities—
than a person who has learned only a set of steps for
finding the overall probability. For this second learner,

Copyright 1994 Psychonomic Society, Inc. 606
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the steps for finding the individual probabilities are ob-
scured because they are simply part of a longer set of
steps for reaching the end goal. This learner would have
fewer cues to direct him or her to the appropriate steps
that need to be changed. '

There may not be a theoretically “best” set of subgoals
for solving problems in a domain. The particular sub-
goals that are taught might represent an instructor’s judg-
ment about how students should decompose problems
into subproblems in order to solve novel problems most
effectively. The judiciousness of the instructor’s choice
of subgoals can be measured by the success of the learn-
ers on novel problems.

A learner will be more likely to learn subgoals for the
subparts of a general solution procedure if those sub-
parts are emphasized in the examples’ solutions. This
claim hinges on the assumption that people will form a
representation that is based on the most salient features
of the example solution. The salience of a feature will
vary, depending on the learner’s expertise in the domain
and how the solution is presented (Larkin, McDermott,
Simon, & Simon, 1980; Ward & Sweller, 1990). In the
present experiments, steps were labeled and visually sep-
arated as a technique for encouraging the formation of a
subgoal.

An important first step in creating useful examples is
to perform a task analysis to determine what elements
need to be learned in order to solve problems in the do-
main of interest. How a domain is analyzed to produce
those elements is by no means standardized. One prom-
ising approach is to create a set of production rules that
solves problems or carries out procedures that one wants
learners to be able to solve or learn (e.g., Anderson,
Boyle, Farrell, & Reiser, 1987; Kieras & Bovair, 1986;
Zhu & Simon, 1987). Examples can then be created in
order to teach these productions to learners.

It does not seem necessary to make a commitment to
a production rule formalism embodying a particular
learning theory such as ACT* (Anderson, 1983) or Soar
(Laird, Newell, & Rosenbloom, 1987) in order to derive
the elements that need to be learned. However, a funda-
mental feature of most production rule systems—the
goal structure—does provide a useful way to represent
the knowledge needed to solve problems in a domain.
Subgoals show the breakdown of a problem-solving pro-
cedure into subproblems (Anzai & Simon, 1979). De-
pending on the features of the examples and of the
learner, the subgoals learned from examples could rep-
resent either a flexible and general approach to solving
problems in a particular domain, or a rigid and superfi-
cial approach.

Learning From Examples

A number of studies have shown that manipulations
of examples have a powerful and systematic effect on
performance on novel problems (e.g., Catrambone &
Holyoak, 1990; LeFevre & Dixon, 1986; Pirolli & An-
derson, 1985; Reder, Charney, & Morgan, 1986; Ross,
1984). Given the central role that examples play in prob-
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lem solving, and given the assumption that people learn
subgoals from the examples, it is important to investi-
gate the conditions that influence subgoal learning.

One reason that many learners do not form the “right”
subgoals (as determined by an experimenter or instruc-
tor) is because examples typically are not designed to
convey them. This observation echoes an inadequacy in
a mechanics example from a physics textbook noted by
Chi et al. (1989, p. 149). In the example, a block is sus-
pended from a ceiling by two pieces of rope joined at a
knot and a third piece of rope extending from the knot
to the block. The task is to find the magnitude of two of
the forces, given the third force. The solution states that
the knot where the three strings are joined should be
considered the body. However, no explanation is given
as to why this decision is made. The decision is made be-
cause, in order to find a force in terms of other forces,
the forces must all act on a common point. In this prob-
Jem, the only place where all three forces act is the knot.
This critical subgoal of finding a common point where
the forces are acting would be useful for many future
problems. However, instead of conveying this subgoal,
the example is more likely to convey a series of steps
that may or may not be useful for other problems.

One question at this point: Why not directly state the
subgoals to learners rather than embedding them in ex-
amples? There are two problems with this approach.
First, learners exhibit a clear preference for learning
from and referring to examples when faced with new
problems (e.g., LeFevre & Dixon, 1986, Pirolli & An-
derson, 1985). Second, although there have been a small
number of successes teaching solution procedures di-
rectly (Fong, Krantz, & Nisbett, 1986), most attempts
have been unsuccessful (e.g., Reed & Bolstad, 1991).

Overview of Experiments 1 and 2

In the first two experiments, subjects studied exam-
ples that differed in whether they emphasized a subgoal
that was predicted to be useful for solving novel test prob-
lems. It was predicted that a subject would be more suc-
cessful at an unfamiliar part of a test problem if he or she
had learned the relevant subgoal, compared with a sub-
ject who did not learn that subgoal.

The domain explored in Experiments 1 and 2 was
probability. This domain was chosen because the train-
ing and testing materials can be relatively simple, and
because prior work (Ross, 1987, 1989) has provided a
useful manipulation.

Ross (1989; Experiment 1B) had subjects study ex-
ample probability problems, such as ones involving per-
mutations, and then solve several test problems. The
mathematical roles of the entities (e.g., scientists, com-
puters) in the examples and test problems were manipu-
lated. For instance, Table 1 presents a permutation prob-
lem involving the determination of the probability that
scientists will pick particular computers. The equation
used for this example was p = l/[n(n—1)..(n—r+1)],
where n is the number of choices available, and r is the
number of choices being made. The test problems re-
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quired some subjects to find, for instance, the probabil-
ity that students will pick particular cars (humans pick-
ing inanimate objects), while other subjects had to find
the probability that particular students would be assigned
to particular cars (i.e., objects “picking” humans).
Corresponding mathematical roles are held by the hu-
mans and objects in the example in Table 1 and the test
problem involving students picking cars. In both the ex-
ample and the test problem, it is the number of humans,
scientists and students, doing the choosing that provides
the value for r. The number of objects, computers and

*  cars, from which to choose provides the value for n. The

second type of test problem, cars “picking” students,
however, has reversed object correspondences: The hu-

mans provide the value for n (see Table 2B for another
example of humans providing a value for n). Ross (1989)
found that subjects were more successful at solving the
first type of test problem than the second, presumably
because their problem solving was guided to some de-
gree by a feature correspondence approach. Specifically,
if the number of objects provided the value of n in the
examples, then subjects were likely to assign them this
role in a test problem, even if it was the number of humans
that should have provided this value in the test problem.

Besides working on permutation problems, Ross’s
subjects studied and solved combination problems. An
example combination problem might ask for the proba-
bility that the seven hooks nearest the classroom door

Table 1
Permutation Training Example

The supply department at IBM has to make sure that scientists get computers. Today, they have 11 IBM computers and 8
IBM scientists requesting computers. The scientists randomly choose their computer, but do so in alphabetical order. What
is the probability that the first 3 scientists, alphabetically, will get the lowest, second lowest, and third lowest serial num-

bers, respectively, on their computers?

Table 2
Test Problems

A. Permutation: People Picking Objects

As part of 2 new management policy, the Campbell Company is allowing the 20 company-owned vacation cotiages 1o be
used for vacations by their 14 plant managers. If the managers, in order of seniority, randomly choose a cottage froma
list, what is the probability that the 4 managers with the most seniority get the most lavish, second most lavish, third most

lavish, and fourth most lavish cottages, respectively?
B. Permutation: Objects Picking People

The secretaries at city hall are supposed to get new chairs th

is week. Today. city hall received 14 new chairs, and there are

11 secretaries fequesting them. For inventory purposes, the property manager wants to assign the chairs in the order that
they are unpacked. So, starting with the chair that is unpacked first, she randomly chooses a secretary to receive it, and
continues until all the secretaries have chairs. What is the probability that the first 2 secretaries, alphabetically, will get

the first and second chairs that are unpacked. respectively?

C. Combination: People Picking Objects

The Happy House Nursery School has had 17 hooks put up in the hall for the coats of their 14 students, with each student
using 1 hook. The students each choose a hook at random as they come in one morning. What is the probability that the
7 tallest students get the 7 hooks closest to the classroom door? (It does not matter which of the particular 7 hooks clos-
est to the door these students get, just as long as it is any 1 of the 7 closest.)

D. Combination: Objects Picking People

The Nashville Gnats Baseball team has a bus that has 30 seats. There are 25 players that are going on a road trip to play

in a nearby town. To avoid arguments, the manager randomly

chooses a player for each seat, starting with the seats in the

front. What is the probability that the 6 pitchers get the 6 front seats? (It does not matter which of the particular 6 front
seats the pitchers get, just as long as it is any 1 of the 6 in the front.)

Table 3
Solution Types Used for the Permutation Example in Table 1

Subgoal Solution

The equation needed for this problem is 1/[ns(n—1)s...%(
way of approaching the problem is to think of it in the following way:

n—r+1)]. In this problem, n = 11 and r = 3. However, another

Probability of the first scientist (who comes first alphabetically) getting the computer with the lowest serial number =

/11

Probability of the second scientist getting the second lowest serial number = 1/10.
Probability of the third scientist getting the third lowest serial number = 1/9.

So, 1/11¢1/10+1/9 = 1/990 = overall probability.

Equation Solution
The equation needed for this problem is 1/ne(n—1)*.. .#(n—r+1). This equation allows one to determine the probability
of the above outcome occurring. In this problem, n =11 and r = 3. The 11 represents the number of computers that are
available to be chosen, and the 3 represents the number of choices that are being focused on in this problem. The equa-
tion divides the number of ways the desired outcome could occur by the number of possible outcomes. So, inserting 11
and 3 into the equation, we find that 1/11#10#9 = 1/990 = overall probability.

Page 6




would be picked by the seven tallest students in a class
(see Table 2C). The equation used to solve combination
problems of this sort is p = [h!(j—h)!];j!. where h is the
number of entities (e.g., students) doing the choosing,
and j is the number of entities in the pool from which
things are chosen (e.g., hooks). Again, Ross demon-
strated the object correspondence phenomenon.

Although Ross taught his subjects the procedures for
solving both permutation and combination problems and
examined transfer to problems in which the roles of hu-
-mans and objects were switched, an examination of the
two procedures shows that a more general procedure can
be used to solve both problem types. Both permutation
and combination problems can be analyzed by consid-
ering the individual event probabilities that contribute to
an overall probability. This approach is demonstrated in
the “subgoal” solution provided for the problem of the
scientists and the computers (see Table 3). The combina-
tion problem, involving students and coathooks (T able 2C),
can be analyzed in a similar way:

Probability that one of the seven tallest students will get
a hook near the door = 7/17.

Probability that one of the remaining six tallest students
will get a hook near the door = 6/16.

Probability that one of the remaining five tallest students

will get a hook near the door = 5/15, etc.

So, B

7!

- m = overall probability.

Combination problems have numerators that are no
longer simply “1.” Instead, they start at the number of
acceptable choices and then are decremented just like
the denominator.

The “subgoal” solution, presented in Table 3 for the
scientists and computers permutation problem, is as-
sumed to help learners form two goals. The first goal is
to find the overall probability; this goal is assumed to
be formed because it is explicitly stated in the example.
The second is the subgoal to find each event probabil-
ity—for example, the probability that the first scientist
will get the computer with the lowest serial number, the
probability that the second scientist will get the com-
puter with the second lowest serial number, and so on.
This subgoal is assumed to be formed because each in-
dividual event probability is explicitly labeled and spa-
tially separate in the subgoal solution in Table 3. The
method for finding an individual event probability will
involve the steps of inserting a 1 in the numerator and
placing the number of (remaining) objects in the denom-
inator of each probability.

The “equation” solution, presented in Table 3 for the
scientists and computers permutation problem, is assumed
to help learners form only the goal to find the overall
probability. The method for achieving this goal will con-
sist of a set of steps for finding numbers from the prob-
lem statement and inserting them into the equation.
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Performance Predictions

Subjects who study either the equation solution or the
subgoal solution are predicted to perform well on the
first test problem they are given (see Table 2A). This
first problem is a permutation problem that is isomor-
phic to the training examples that the subjects studied,
and humans and objects play the same roles that were in
the examples (i.e., humans picking objects). The sub-
jects can simply repeat the steps learned from the ex-
amples. Performance on this problem serves as a check
that a subject has learned at least a set of steps.

Two of the three remaining test problems, one per-
mutation problem and one combination problem (see Ta-
bles 2B and 2D), reverse the roles for humans and ob-
jects compared with the training examples; that is, objects
are “picking” humans. What this means in terms of the
solution is that the numbers that go into the denomina-
tor are based on the number of humans in the problem,
not the number of objects. It is predicted that subjects
will have difficulty with this aspect of the problems.
However, those who study the subgoal solution (the sub-
goal group) are predicted to have learned the subgoal to
find each individual event probability, and thus might be
more likely to consider what the numerator and denom-
inator mean in each event probability. As a result, these
subjects have a better chance to consider modifying the
denominator for this problem than subjects in the equa-
tion group.

The two combination test problems (see Tables 2C
and 2D) are expected to cause difficulty on numerator
performance since, unlike the examples’ numerators, the
numerators are no longer 1. Once again, the Subgoal group,
by virtue of learning the subgoal to find each individual
event probability, is predicted to outperform the equa-
tion group because the subgoal of finding each individ-
ual event probability might lead the Subgoal subjects to
consider the numerator as a potential locus for change.

EXPERIMENT 1

In Experiment 1, I tested the hypothesis that transfer
will be improved if subjects study training examples that
emphasize a subgoal needed for novel problems. Be-
sides examining problem-solving performance, another
measure of subgoal learning was attempted by having
subjects describe how to solve probability problems
after studying the examples. If a subject’s description in-
cludes a statement such as “find the probability of each
event’s occurrence,” then this would be taken as addi-
tional support that he or she had learned that subgoal.
The subgoal group should mention the subgoal of break-
ing the overall probability into a set of individual event
probabilities more often than the equation group, since
this is the major difference in the solution approaches
presented to the two groups. The subjects who mention
this subgoal should perform better than other subjects on
the denominators for reversed-roles permutation and
combination problems and on the numerators for the
combination problems.
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Although the emphasis so far has been placed on the
differences in the solutions studied by the subgoal and
equation groups, it is important to note that the solutions
are similar in length and, presumably, clarity (see Table 3).
One could construct a solution type that is arbitrarily un-
clear and demonstrate that subjects’ performance on trans-
fer problems is poor relative to subjects who study ex-
amples using a solution type that is arbitrarily clear. Itis
suggested that the equation solution contains potentially
useful information for solving test problems, but that
subjects who study that solution are likely to focus on
how values are inserted into the equation rather than
form a more general procedure.

Method ’

Subjects. The subjects were 66 students from introductory psy-
chology classes at the Georgia Institute of Technology who par-
ticipated for course credit. None of the subjects had taken a prob-
ability course prior to participating in the experiment.

Materials and Procedure. The subjects received a booklet con-
taining training examples and test problems. All the subjects stud-
ied two isomorphic worked-out permutation example problems in
which humans picked objects. Table 1 presents one of these
examples.

The subjects were randomly assigned to the equation group (n =
31) or the subgoal group (n = 35). In the equation group’s exam-
ples, an equation was used in order to solve the problem. The so-
lution included an explanation of the meaning of the numbers
being inserted into the equation. The subgoal group’s examples di-
vided the probiem into finding each individual probability. Table 3
contains the solutions that were seen by the groups for one of the
training examples.

The subjects were asked to study the examples carefully and
were told that, after studying them, they would be asked to solve
some problems. They were also told that they could not look at the
examples when working on the problems. This restriction was in-
tended to increase the likelihood that they would pay attention 10
the examples and how they were solved.

After studying the examples, the subjects were asked to describe
how to solve problems in the domain. The instructions were: “Sup-
pose you were going to teach someone how to solve probability
problems of the type you have just studied. Please describe the
procedure you would give someone to solve these problems. Please
be as complete as possible.”

After writing their descriptions, the subjects attempted to solve
the four test problems in Table 2. The first problem was isomor-
phic to the examples (see Table 2A). The second problem (B) was

. a permutation problem like the examples, but humans provided the

value of n (see Table 2B). The third and fourth problems (C and
D) were combination problems. In the first combination problem,
humans picked objects, which is the same notion shown in the ex-
amples (see Table 2C). In the second combination problem, ob-
jects picked humans (see Table 2D). Thus, the test problems rep-
resented a range of difficulty as a function of whether they
involved permutations or combinations and whether humans were
picking objects, or objects were picking humans.

The subjects worked at their own pace and were asked to show
all their work. In general, they took about 30 min to complete the
experiment. Each permutation problem was scored for whether a
subject used the correct denominator. For instance, the solution to
the second permutation problem is 1/11 = 1/10. If a subject wrote
1/14 * 1/13, confusing the roles of the chairs and secretaries, the
denominator would be scored as incorrect. For combination prob-
lems, the numerator and denominator were both scored as correct
or incorrect. Two raters independently scored the problems; their
scores agreed 92% of the time. Any disagreements were resolved

by discussion. The frequencies with which the groups correctly
found the denominators for the permutation problems and the de-
nominators and numerators for the combination problems were an-
alyzed by using the likelihood ratio chi-square test (G2; Bishop,
Fienberg, & Holland, 1975).

Results and Discussion

The overall performance differences between the
groups can be summarized as follows: They did not re-
liably differ on denominator performance for the reversed-
role problems (i.e., objects picking humans), but the
subgoal group outperformed the equation group on the
numerators for the combination problems.

As expected, both groups were quite successful in de-

“termining the denominator on the first permutation

problem, which was isomorphic to the training examples
and had humans and objects playing the same roles as in
the examples [GX(1) = 0.5,p = .78; see Table 4].

In the second permutation problem, objects picked hu-
mans—a reversal from the training examples. An error
that the subjects frequently made on this problem was to
use the number of chairs (14) as the starting point in the
denominator rather than the number of secretaries (11).
Although the groups did not significantly differ in find-
ing the denominator [GX(1) = 1.11, p = .29], there was
an 11% advantage for the subgoal group (see Table 4).

The next problem was a combination problem in
which humans picked objects. The subjects were fairly
successful at finding the denominator and, as expected,
did not differ significantly on this measure [G(1)=.09,
p = .76; see Table 4). However, they did have difficulty
finding the correct numerator for this problem; many of
the subjects simply used 1. As expected, the subgoal
group outperformed the equation group on this measure
[G¥(1)=6.39,p=.01].

In the second combination problem, objects picked
humans. As in the reversed-roles permutation problem,
the subjects had difficulty finding the correct value for
the denominator. The groups did not differ significantly
on this measure [G2(1) = .06, p = .80; see Table 4]. As
in the first combination problem, the subjects had diffi-
culty finding the correct numerator. As expected, the
subgoal group was more successful than the equation
group on this measure {G2(1) = 9.83, p = .002].

Table 4
Performance (Percent Correct) on Experiment 1 Test Problems
Group
Equation Subgoal
(n=231) (n = 35)
Permutation Problem 1 (people pick objects)
Denominator 94 89
Permutation Problem 2 (objects pick people)
Denominator 23 34
Combination Problem 1 (people pick objects)
Denominator 71 74
Numerator 13 40
Combination Problem 2 (objects pick people)
Denominator 23 20
Numerator 10 43
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The transfer results suggest that the subjects in both

- groups were equally misled by superficial role reversals

of objects and humans in the denominator. However, the
subgoal subjects were more likely to adapt their solution
procedure to find the numerator correctly in combina-
tion problems. :

Relationship between training examples and expla-
nations produced by subjects on how to solve problems.
The subjects’ explanations of how to solve problems in
the domain were scored for whether they mentioned the
subgoal of dividing the overall probability into a series
of individual probabilities. Six equation subjects and 5
subgoal subjects produced explanations that were too
general or idiosyncratic to be scored. These explanations
typically consisted of statements such as I would read
through the example and write it up on the board for the
person.” These subjects were excluded from the follow-
ing analyses.

The subgoal group mentioned the notion of dividing
the overall probability into a set of individual probabil-
ities far more often than the equation group [83% vs.

.8%; G2(1) = 35.3, p <.0001]. This was expected, since

the subgoal group studied example solutions that labeled
and isolated individual probabilities, whereas the equa-
tion group did not.

Relationship between explanations and transfer per-
formance. It was expected that the subjects who men-
tioned the subgoal of finding individual event probabil-
jties in their explanations would be more likely to
correctly find the denominator in the reversed-role prob-
lems and the numerator in the combination problems.

There was no difference in denominator performance
for the first permutation problem for the subjects who
mentioned the notion of dividing a probability into in-
dividual probabilities (the “IndProb” subjects) com-
pared with the subjects who did not mention this notion
in their explanations (the “OneProb” subjects) [G¥(1) =
.18, p = .67; see Table 5]. This is not surprising, since in
this problem humans choose objects, as in the examples.

Table §
Performance (Percent Correct) on Test Problems
as a Function of Subjects’ Explanations in Experiment 1

Group
OneProb* IndProbt
(n=27) (n=28)
Permutation Problem 1
Denominator 89 93
Permutation Problem 2
Denominator 14 © 37
Combination Problem 1
Denominator 78 74
Numerator 14 44
Combination Problem 2
Denominator 11 26
Numerator 11 44

*Does not mention breaking problem into individual probabilities.
+Mentions breaking problem into individual probabilities.
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As expected, the IndProb subjects were more suc-
cessful than the OneProb subjects at finding the correct
value for the denominator in the second permutation
problem, which involved reversed roles for humans and
objects [G(1) = 3.84, p = .05; see Table 5].

In the first combination problem, humans and objects
played the same roles that were in the examples, and
therefore it is not surprising to find that there was no dif-
ference between the groups in finding the correct value
for the denominator in this problem [G*(1) = .15, p =
.69; see Table 5]. As expécted, the IndProb subjects were
more successful than the OneProb subjects at finding the
correct value for the numerator [G(1) = 6.26, p = .01;
see Table 5].

Although the anticipated difference between the
groups in finding the correct value for the denominator
in the second combination problem—a reversed-roles
problem—was not found [G¥(1) = 2.18, p = .14], the
IndProb group had a 15% advantage (see Table 5). As
expected, the IndProb subjects were more successful
than the OneProb subjects at finding the correct numer-
ator value [G2(1) = 8.29, p = .004; see Table 5].

These results follow the trend of those that were found
when the instructional groups were compared on the
transfer problems. This makes sense, since the subgoal
subjects were by far the ones most likely to mention the
notion of dividing an overall probability into individual
probabilities.

It could be argued that learners who write “better” de-
scriptions (e.g., mention the subgoal of f inding individ-
ual event probabilities) are also the ones who are better
at transfer. One defense against this argument is to note
that the experimental manipulation of type of examples
studied influenced transfer success.

Although the subgoal subjects did not reliably out-
perform the equation subjects on the denominators for
reversed-role problems, they were clearly superior at fi ind-
ing the correct numerators for the combination problems.
In addition, the IndProb group outperformed the OneProb
group on finding the denominator for one of the reversed-
role problems. Although most of the results support the
predictions, the unreliability of the denominator effect
for the reversed-role problems suggested that a second,
more focused experiment would be appropriate.

EXPERIMENT 2

The procedure and materials for Experiment 2 were
identical to those of Experiment 1, except for three fea-
tures: (1) the subjects studied three rather than two train-
ing examples, (2) the subjects were not asked to write
explanations of how to solve problems, and (3) for half
of the subjects, the combination problems did not con-
tain the last sentence shown for each combination prob-
lem in Table 2.

The number of examples presented to the subjects was
increased to improve the likelihood that they would
learn the procedures demonstrated in the examples and
perhaps improve transfer to the test problems. They were
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not asked to write explanations, since this task was un-
usual and may have influenced learning in unanticipated
ways. Finally, the last sentence for each combination
problem in Table 2 was removed for half of the subjects
in order to examine whether they signaled to the subjects
that these problems were different from the training ex-
amples and needed to be approached differently. Perhaps
with this cue removed, the subgoal subjects would not
outperform the equation subjects.

Method

Subjects. The subjects were 78 students from introductory psy-
chology classes at the Georgia Institute of Technology who par-
ticipated in the experiment for course credit. None of the subjects
had taken a probability course prior to participating in the exper-
iment.

Materials and Procedure. The subjects received a booklet con-
taining training examples and test problems. They all studied three
isomorphic worked-out permutation example problems in which
humans picked objects (including the two used in Experiment 1).

The subjects were randomly assigned to the equation group
(n = 40) or the subgoal group (n = 38). After studying the exam-
ples, they solved the four test problems in Table 2. The subjects
worked at their own pace and were asked to show all their work.
In general, they took about 25 min to complete the experiment.
Two raters independently scored the problems, and their scores
agreed 90% of the time. Any disagreements were resolved by
discussion.

Results and Discussion

The results were similar to those from Experiment 1
and supported most of the predictions. The subgoal group
strongly outperformed the equation group on the nu-
merators for the combination problems and showed a
trend toward superior performance on the denominator
for one of the two reversed-role problems.

As expected, both of the groups did well in determin-
ing the denominator for the first permutation problem,
and there was no significant difference in their perfor-
mance [G(1) = 0.63, p = .43; see Table 6]. As in Ex-
periment 1, both of the groups showed inferior perfor-
mance in determining the denominator for the second
permutation problem—a problem with reversed roles for
humans and objects. As predicted, there was an advan-
tage (20%) for the subgoal group, although this differ-
ence just missed significance [G%(1) = 3.47, p = .06;
see Table 6].

Performance on the combination problems was ini-
tially broken down as a function of training group and
whether or not the problems contained the last sentence
presented for each combination problem in Table 2. There
was no main effect of sentence for either problem, nor
was there an interaction between group and presence of
the sentence; thus, the analyses and the results for the
combination problems are collapsed across this factor in
Table 6. .

In the first combination problem, humans picked ob-
jects, and, as anticipated, the subjects were fairly, and
equally, successful at finding the denominator [GX(1) =
.009, p = .92; see Table 6]. As expected, the subgoal
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Table 6
Performance (Percent Correct) on Experiment 2 Test Problems
Group
Equation Subgoal
(n=40) (n = 38)
Permutation Problem 1
Denominator 90 95
Permutation Problem 2
Denominator 22 42
Combination Problem 1|
Denominator 85 84
Numerator 0 29
Combination Problem 2
Denominator 30 32
Numerator 0 32

subjects outperformed the equation subjects at finding
the correct numerator [G¥(1) = 17.7, p = .0001; see
Table 6].

The predicted superior performance by the subgoal
subjects did not occur for finding the correct value for
the denominator in the second combination problem, 2
reversed-roles problem [G%(1) = 0.02, p = .88, see
Table 6]. As expected, the subgoal subjects outper-
formed the equation subjects at finding the correct nu-
merator [G%(1) = 19.6, p = .0001; see Table 6}.

It was hypothesized that the subgoal subjects learned
the subgoal to find individual event probabilities, but the
equation subjects did not. This subgoal was predicted to
aid performance in finding the denominator for reversed-
role problems and the numerators for combination prob-
lems. Both experiments clearly demonstrated the numer-
ator effect. Experiment 1 demonstrated a trend toward
the denominator effect for the reversed-role problems,
primarily when the subjects were partitioned into those
who mentioned, or failed to mention, the subgoal of
finding individual event probabilities in their explana-
tions. This trend was stronger for the permutation prob-
lem than for the combination problem. Experiment 2
also showed this effect more strongly for the permuta-
tion problem. It is not clear if there are certain features
of these two problems that differentially affected de-
nominator performance. The subjects’ explanations of
how to solve problems were consistent with the claim
that the subgoal subjects were more likely to learn the
subgoal to find individual event probabilities than the
equation subjects.

The fact that the denominator effect was less reliable
than the numerator effect may be due to the role of su-
perficial features. The training examples presumably led
the subjects to expect objects to provide the value for the
denominator, and perhaps this expectation tended to
override any benefits due to learning subgoals, espe-
cially since a value for objects was always provided in
each problem. The tendency toputa 1 as the numerator
may have been more easily overridden by subgoal learn-
ing because its connection with either humans or objects
is less clear.




EXPERIMENT 3

Experiment 3 was an attempt to generalize the find-
ings from the first two experiments to another domain:
algebra word problems. This domain was chosen be-
cause prior work had demonstrated poor transfer from
training to transfer problems despite attempts to improve
examples (e.g., Reed et al., 1985). Consider the algebra
example in Table 7A, in which one has to determine how
long it would take someone to do a job given that cer-
tain information about their work rate and time and an-
other person’s work rate and time are provided. This
problem involves using an equation for determining
work that requires representing each worker’s work rate
and time: (rate, X time,) + (rate, X time;) = 1.

Learners are good at memorizing how to solve prob-
lems that are isomorphic to the one in Table 7A. In this
problem, both of the workers’ rates are represented as
constants. The time spent working by Worker 1 is rep-
resented as a variable, and Worker 2’s time is repre-
sented as a function of that variable. However, learners
may not encode the example solution by determining a
representation for each rate and time and then inserting
these representations into the equation. Instead, they
have a more superficial understanding of the solution
procedure, which involves matching the form used in
the example, finding similar values in the problem
statement, and inserting them into the equation. As are-
sult, if a new problem requires a different representation
of the rates and times, these learners may be unable to
solve the problem. That is, the learners may not have
learned that certain subgoals exist—the subgoals.of rep-
resenting each worker’s rate and time—and that these
subgoals might be achieved differently (i.c., different
ways of representing rate and time depending on the
givens in the problem) from the way they were achieved
in the example.

For instance, the problem in Table 7B requires that
Worker 1’ rate be represented as a variable. In addition,
instead of having the workers’ times be represented as a
variable and a function of that variable, the times are rep-
resented as a constant and a function of that constant.
Nevertheless, the new representations can be inserted into
the same equation that was used for the example in
Table 7A. Similarly, the problem in Table 7C requires
that Worker 1% rate be represented as a variable, and
Worker 2’s rate be a function of that variable. Their times
are both represented as constants. These representations
are different from those used in the examples.

It is hypothesized that if the representations for rates
and times are highlighted separately from the equation
in the example solutions, then learners will be more likely
to learn that rate and time are individual representations
that must be determined for each worker. In addition, it
is hypothesized that if subjects learn the subgoals of rep-
resenting workers’ rates and times, then they will be
more likely to correctly solve a novel problem requiring
novel representations for rates and times than would sub-
jects who do not learn those subgoals.
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Table 7
ExunpleandTederkPmblemsinExpeﬁmentS
A. Mary can rebuiid a carburetor in 3 hours and Mike can rebuild one
in 4 hours. How long would it take Mary to rebuild a carburetor if she
and Mike work together, but Mike works for '3 hour more than Mary?

Solution
1/3 = Mary’s rate
t = time Mary spent rebuilding carburetor
1/4 = Mike’s rate
t + 1/2 = time Mike spent rebuilding carburetor
(1/3s8) + (1/4¢(1 + 1/2)] = 1
2+t =1- 1/8
¢ = 7/8+12/7 = 3/2 hours = time Mary spent rebuilding carburetor

B. Mr. Jones can refinish a dresser in 5 hours. After working for 2
hours, he is joined by his wife. Together they finish the job in 1 hour.
How much of the job could his wife do in 1 hour when working alone?

Solution [not seen by subjects]
[1/5¢2+1)] + (wel) =1
I5+w=1
w=2/5 = wife’s rate
so, in 1 hour, wife could do 2/5 of job

C. Barbara and Connie can finish a job in 6 hours when they work to-
gether. Barbara works twice as fast as Connie. How much of the job
could Connie do in 1 hour when working alone?

Solution [not seen by subjects)
(2c%6) + (c*6) =1
12c+6c=1
18¢c=1
¢ = 1/18 = Connie’s rate
s0, in 1 hour, Connie could do 1/18 of job

Subjects who learn the subgoal to represent each
worker’s rate should be more successful at representing
the rate as a variable in the problem in Table 7B and rate
as a variable and rate as a function of a variable in the
problem in Table 7C. Subjects who learn the subgoal to
represent each worker’s time should be more successful
at representing the time as a constant and a function of
a constant in the second problem (B) and as a constant
in the third problem (C).

Method

Subjects. Sixty-two students from introductory psychology
classes at the Georgia Institute of Technology participated for
course credit.

Materials and Procedure. The subjects studied three isomor-
phic example word problems dealing with work, including the
example in Table 7A. The “rate and time label” (RTL) group (n=
21) studied examples in which the representations for rates and
times were presented separately from the equation (see Lines 1-4
in the solution to the example in Table 7A). The “time label” (TL)
group (n = 20) studied examples that presented the representa-
tions for each worker’s time (i.c., Lines 2 and 4 from the example
in Table 7A). The “rate label” (RL) group (n = 21) studied exam-
ples that presented the representations for each worker’s rate (i.c.,
Lines 1 and 3 from the example in Table 7A). .

After studying the examples, the subjects received three prob-
lems to solve. One was isomorphic to the training examples, and
the other two involved new and old ways of representing rate
and/or time (see Tables 7B and 7C).

Results and Discussion
All of the groups performed well at representing rate
and time in Problem 1, which was isomorphic to the
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Table 8
Performance (Percent Correct) on Test Problems in Experiment 3
Group
RTL TL RL
(n=21) (n=20) (n =21)
Problem 1
Rate Worker 1 (constant) 100 100 100
Rate Worker 2 (constant) 100 100 95
Time Worker 1 (variable) 100 100 100
Time Worker 2 95 95 100
(function of a variable)
Problem 2
Rate Worker 1 (constant) 100 95 100
Rate Worker 2 (vaniable) 86 55 86
Time Worker 1 81 90 57
(function of a constant) .
Time Worker 2 (constant) 90 90 57
Problem 3
Rate Worker 1 (variable) 90 60 - 90
Rate Worker 2 86 50 86
(function of a variable)
Time Worker | (constant) 90 100 62
Time Worker 2 (constant) 90 100 62

Note—RTL, rate and time label; TL, time label; RL, rate label.

training examples (see Table 8). This is not surprising,
since the subjects could match the representations from
the training examples and simply plug in the new values.

In Problem 2 (Table 8), almost all of the subjects cor-
rectly represented the rate as a constant for Worker 1.
Again, this is reasonable since this was the representa-
tion used in the training examples. The RTL and RL
groups were significantly more successful than the TL
group at representing the rate for Worker 2 as a variable
[G*(2) = 6.63, p = .04]. The RTL and TL groups were
more successful than the RL group at representing the
rate for Worker 2 as a constant [G2(2) = 8.78, p = .01]
and Worker 1 as a function of that constant [GX(2) =
6.50, p = .04].

In Problem 3 (Table 8), the RTL and RL groups were
significantly more successful than the TL group at rep-
resenting the rate for Worker 1as a variable [G*(2) =
7.59, p = .02] and Worker 2 as a function of that vari-
able [G%(2) = 8.63, p = .01). The RTL and TL groups
were more successful than the RL group at representing
the rates for Workers 1 and 2'as constants [G%(2) = 13.66,
p = .001, in both cases]. Across the problems, the most
common errors were that the subjects either left out the
representation for time or rate in the equation, or wrote
that not enough information was given in the problem.

The results from this experiment are consistent with
the hypothesis that subjects who learned the subgoals of
representing workers’ rates and times would represent
them more successfully on novel problems. However, al-
ternate explanations exist. One is that the highlighting
manipulation essentially provided labels for the vari-
ables, and thus made them more meaningful. This “mean-
ingfulness™ helped the subjects to properly use the vari-
ables in the equation for the novel transfer problems. The
results from Experiment 3, taken alone, are not sufficient
to discriminate between this explanation and the subgoal
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explanation. However, the pattern of results across the
three experiments is consistent with a subgoal explana-
tion. It is not clear how the “subgoal” solution in the first
two experiments made the variables more meaningful.

One could consider the subgoal explanation of the re-
sults as being an attempt to make the notion of mean-
ingfulness more precise. Subgoals can be viewed as a
way of making a solution procedure more meaningful by
providing guideposts that the solver must reach en route
to achieving the overall solution to the problem. In the
algebra experiment, the guideposts were to explicitly
represent the rate and time for each worker. Even if these
guideposts are somewhat arbitrary, at least from the
point of view of the solver, they still provide organiza-
tion and guidance that may make the solver less likely
to stray from the correct solution path (cf. Mawer &
Sweller, 1982).

It is worth noting that performance on the test prob-
lems was generally quite good. This suggests that even
for relatively sophisticated subjects (most of the students
in the experiment had at least one term of college cal-
culus), examples that more effectively convey subgoals
can improve transfer performance.

GENERAL DISCUSSION

The aim of the present study was to examine whether
examples that teach a subgoal structure for solving prob-
lems in a domain could be created and whether learning
these subgoals would help subjects solve problems that
required novel methods for them. The numerator per-
formance results and some of the denominator perfor-
mance results in the probability experiments, and the
rate and time results in the algebra experiment, suggest
that subgoals can be conveyed to learners through ex-
amples, and that learning these subgoals helps people
achieve them in novel problems. This is quite encourag-
ing in comparision with the usual finding in the prob-
lem-solving literature, which has shown poor transfer
from training materials to test problems that require
more than a simple repetition of a set of memorized
steps (e.g., Reed et al., 1985; Ross, 1987, 1989). These
findings suggest that examples that emphasize a useful
subgoal structure can help turn learners into the “good”
learners observed by Chi et al. (1989), who tended to
find meaning, such as goals, for the mathematical steps
in the examples and who made use of this information
when solving novel problems.

Mayer and Greeno (1972) experimentally manipu-
lated the meaningfulness of instruction in solving bi-
nomial probability problems by varying whether the
instruction focused on mechanical operations or on con-
cepts that were presumed to be part of subjects’ prior
knowledge. They found that the “mechanical” group
was more successful at solving familiar problems,
whereas the “concept” group was better at answering
“understanding” questions about the domain, such as
whether the number of successes could be greater than
the number trials. The present study extends Mayer and




Greeno’s findings by showing that learning subgoals
promotes transfer to novel problems while also helping
learners exhibit some level of understanding, as shown
by the explanations produced by the subgoal subjects in
Experiment 1.

CONCLUSIONS

The present results are consistent with the claim that
learning subgoals will help learners determine which
parts of a solution procedure need to be modified in
order to solve novel problems. The results also provide
a starting point for determining how to “emphasize” a
subgoal in an example. The approach used here was to
create example solutions that isolated components of the
procedure that could be construed as subgoals. The vi-
sual separation and the labeling, and perhaps.their in-
teraction, may have all played a role in subgoal learning.

Smith and Goodman (1984) examined subgoal learn-
ing by comparing a group of subjects who followed a set
of steps for assembling an electric circuit with a group
who received a structurally oriented “explanatory schema”
with the steps. This schema consisted of statements that
provided a rationale for carrying out sets of steps. Each
rationale was essentially a statement of a goal that the
steps were achieving (e.g., “The next thing that you will
have to do is to asserible the on—off switch”). When as-
sembling a new circuit, the subjects who had previously
received the explanatory schema were more accurate at
building the substructures corresponding to the goals,
even though the required steps were not identical to the
ones followed during training.

The present results, and those from Smith and Good-
man (1984), suggest that research aimed at determining
factors that affect subgoal learning, such as the use of la-
bels and visual separation of steps in examples, would
have clear pedagogical benefits. In addition, it is im-
portant, both in terms of theory development and the
production of effective training materials, to explore
what constitutes a good subgoal structure for a given do-
main. Perhaps a theory-motivated technique can eventu-
ally be developed for determining effective subgoal
structures for any given domain.
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Students often memorize a set of steps from examples in domains such as probability and
physics, without learning what subgoals those steps achieve. A result of this sort of learning
can be that these students fail to solve novel problems that do not permit exactly the same set
of steps even though the old goal structure is maintained. Three experiments demonstrated
that both labeling and visually isolating a set of steps in examples independently help students
learn a subgoal and be more likely to solve novel problems that involve that subgoal but

require different steps to achieve it.

N4

What do students learn from worked examples in domains
such as probability and physics? Often, students memorize
a set of steps to which they attach relatively little meaning.
As a result, when faced with a test problem that has the
same goal structure but requires different steps for achiev-
ing the goals, students may rigidly and incorrectly apply the
old steps or fail to produce a solution at all (e.g., Reed,
Dempster, & Ettinger, 1985; Ross, 1987, 1989).

. Learners are more successful solving novel problems
when they learn the goal structure of the problems in that
domain (e.g., Anzai & Simon, 1979; Eylon & Reif, 1984).
#Researchers use the term subgoal (and goal) in two differ-
-ent ways. The first defines a .subgoal to be something
.people—or computer programs—form when they are work-
ing on a problem and reach a point where they do not simply
recognize what to do next because they have no options, too
‘many options, conflicting options, etc. A subgoal is formed
at this impasse (e.g., Newell, 1990, Chapter 4; VanLehn,
1988). The second considers subgoals to represent the task
structure to be learned for solving problems in a particular
domain and assumes that these subgoals can be taught to
learners (e.g., Catrambone, 1994a; Catrambone & Holyoak,
1990; Dixon, 1987; Eylon & Reif, 1984). From the second
point of view, a subgoal groups a set of steps under a
meaningful task or purpose (e.g., Anzai & Simon, 1979; Chi
& VanLehn, 1991). For instance, in the probability materi-
als used in the current experiments, a set of multiplication
and addition steps can be grouped under the subgoal “find
the total frequency of the event.” It is the second, task-
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analysis-driven view of subgoals that I followed in the
present study.

An instructor might help students learn the goal structure
through worked examples. The particular subgoals taught
might represent an instructor’s judgment about how stu-
dents should decompose problems into subproblems to
solve novel problems effectively. Novel problems are taken
to be problems that share the same goal or task structure
with training examples but that require a change in the steps
for achieving at least one of the subgoals.

Much research indicates that the way learners encode
examples influences how likely they are to access examples
and how likely they are to apply or adapt examples success-
fully in new situations (¢.g., Brown, Kane, & Echols, 1986;
Gentner & Gentner, 1983; Gick & Holyoak, 1983). For
instance, Brown et al. found that young children were more
likely to use a prior story to help them solve an analogous
problem if the children had either spontaneously, or through
prompting, previously induced the goal structure of the
story.

My aim in this study was to examine whether learners’
transfer to novel problems is improved if they study exam-
ples designed to convey a solution procedure organized by
subgoals versus examples designed to convey only the steps
of the solution procedure.

Learning From Examples

Learners, particularly novices, typically prefer to study or
refer to examples, as opposed to instructions or descriptions
of principles of a domain, when working on problems (e.g.
Pirolli & Anderson, 1985). Learners explicitly mention ex-
amples when solving a problem (Lancaster & Kolodner,
1988; Ross, 1984), and they follow examples rather than
instructions when the two conflict (LeFevre & Dixon,
1986). .o

Unfortunately, people frequently do not learn from exam-
ples what is needed to solve novel problems. Rather, people
tend to memorize a set of steps. Attempts to improve this
situation have usually found little improvement in transfer.
For instance, Reed et al. (1985) provided elaboration de-
signed to help students understand the principles illustrated
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in algebra examples. In general, these elaborations did not
improve performance on nonisomorphic problems. Similar
transfer difficulties after learning from examples were doc-

-umented by Gick and Holyoak (1983), Ross (1987, 1989),

and others. However, several researchers have demonstrated
some success in using examples to help learners transfer to
novel problems (e.g., Ward & Sweller, 1990; Zhu & Simon,
1987). It is unclear why conflicting transfer results are

“found across these studies. The subgoal framework offered

e

below may help to identify situations in which transfer is
more or less likely to occur.

Value of Learning Subgoals

Prior work suggests that students can learn subgoals from
examples. Chi and her colleagues (Chi & Bassok, 1989;
Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi &
‘VanLehn, 1991) examined the self-explanations learners

- produce when studying examples. Chi et al. (1989) divided

their students into “good and poor students” (p. 158) as a
function of test problem performance that followed an
example-studying phase. “Good” students demonstrated su-
perior transfer to novel problems; their self-explanations of
the steps “from example solutions in physics mechanics

. problems contained more goals, descriptions of the precon-

ditions for actions, and explications of the consequences of
actions, than did the self-explanations of “poor” students

' (Chi & VanLehn, 1991).

Although students who learn easily and students who
have difficulty learning may differ on various dimensions in
addition to the self-explanations they produce, one infer-
ence that might be drawn from Chi and her colleagues’
work is that learning will be improved if examples provide
the types of explanations that students who learn easily
produce on their own. One of these explanation types are
subgoals.

Subgoals are useful because they group a set of steps and
in some sense explain what the steps accomplish. If the
learner can recognize which subgoals are relevant for solv-
ing a novel problem, then those subgoals can guide the
learner to the steps from the old solution procedure that
need to be modified to achieve the subgoals in the new
problem.! In contrast, a learner who had simply memorized
a string of steps for solving a particular problem type,
without grouping sets of steps under the subgoals they
achieve, will have fewer cues to direct him or her to the
steps that need to be modified for the novel problem.

A subgoal framework can be useful for explaining trans-
fer. The framework can be used to determine the subgoals

- learners need to know to solve problems in a domain, and it

can be used to guide the construction of examples to in-
crease the likelihood that learners learn these subgoals.
Researchers conducting studies within this framework can
examine issues such as finding the most effective ways to
determine the subgoals in a domain and finding effective
ways of conveying those subgoals through examples.
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Improving Examples

In the current study, a set of steps, which was part of the
overall solution, was labeled in training examples as a way
of conveying the subgoal those steps achieved. 1 hypothe-
sized that example solutions that label a set of steps will
make a person more likely to learn the subgoal achieved by
the steps rather than merely memorizing the steps them-
selves. Furthermore, I hypothesized that by learning the
subgoal, the learner will be more likely to successfully
achieve it in a novel problem that requires a different set of
steps to achieve that subgoal.

This second hypothesis was made for two reasons. First,
subgoals were one type of knowledge produced more often
by students who learned easily than by students who had

- difficulty learning in Chi and her colleagues’ studies (e.g.,

Chi et al., 1989). Second, subgoal leaming seems to be
correlated with better performance at solving problems that
involve the same subgoals, even if the problems are novel
and require different steps to achieve the subgoals (Anzai &
Simon, 1979; Catrambone & Holyoak, 1990; Mawer &
Sweller, 1982).

The present study continues a line of research on factors
that influence subgoal learning (Catrambone, 1994a;
Catrambone & Holyoak, 1990). Catrambone and Holyoak
(1990) examined whether learners studying examples that
demonstrated multiple ways of achieving a subgoal would
be more likely to learn the subgoal than learners studying
examples demonstrating a single method. The results sug-
gested that studying multiple methods did not aid subgoal
learning, at least within the confines of a 1-hr experiment.
However, subgoal learning did appear to be aided when
learners studied examples that provided elaborations about
the particular methods used for achieving a subgoal. How-
ever, these elaborations contained a variety of information
including additional domain theory, explanations of the
conditions that led to a certain method being chosen, and
labels for key groups of steps. Thus, it is not clear which
feature(s) of the elaboration promoted subgoal learning.

On the basis of preliminary research (Catrambone,
1994b) and the findings of Chi et al. (1989) suggesting that
students who learn easily tend to group steps into subgoals,
I examined whether a relatively minimal manipulation, pro-
viding a label for a set of steps, would make learners more
likely to form a subgoal.

A study by Smith and Goodman (1984) supports the idea
that labels can aid subgoal learning and transfer to mew
situations. The relevant comparison is between a group of
students who followed a set of steps for assembling an
electric circuit and a group who received a structurally
oriented “explanatory schema” (Smith & Goodman, 1984,
p. 360) with the steps. This schema consisted of statements
that provided a rationale for why sets of steps needed to be

1The issue of learning to recognize when a subgoal is appro-
priate for a particular problem is not addressed here. All training
and test problems involved the same subgoals. Rather, the empha-
sis is on learners’ ability to achieve the subgoal in a new way in
test problems.
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carried out. Each rationale was essentially a statement of a
goal that the steps achieved (e.g., “The next thing that you
will have to do is to assemble the on—off switch.”). When
assembling a new circuit, students who had previously
received the explanatory schema were more accurate in
building the substructures corresponding to the goals even
though the required steps were not identical to the ones
followed during training.

“The current study differs from Smith and Goodman'’s
(1984) work in several ways. First, during training their
students carried out a set of instructions, whereas students in
the current experiments studied examples. Second, the
Smith and Goodman transfer task involved the students’
following a new set of instructions, whereas in the present
stydy students had to solve novel problems. Third, the
explanatory schema used by Smith and Goodman provided
a rationale for why a set of steps were carried out. Con-
versely, although the labels used in the present experiments
presumably helped students group a set of steps, it was left
to the students to supply the rationale for why those steps
were executed. Thus, in the present study I analyzed transfer
in a more demanding situation in which I explicitly exam-
ined the role of examples in subgoal learning.

Test Domain; The Poisson Distribution

The Poisson distribution is often used to approximate
binomial probabilities for events occurring with some small
probability. The Poisson equation is

= A} (¥
IOV (G )|
x!
where A is the average (the expected value) of the random
variable X, e is the mathematical constant 2.718, and x is the
number of successes of interest.

Consider an example of the use of the Poisson distribution
in which the average number of briefcases owned per law-
yer is found so that one can predict the probability of a
randomly chosen lawyer owning a certain number of brief-
cases (sce Appendix A). The method for the goal of finding
A, the average frequency of the event (e.g., owning a brief-
case), could be represented as:

Goal: Find A
Method:

1. Multiply each event category (e.g., owning ex-
actly zero briefcases, owning exactly one brief-
case, etc.) by its observed frequency.

2. Sum the results.

3. Divide the sum by the total number of trials (num-
ber of lawyers) to find the average number of
briefcases per lawyer.

Leamers are good at memorizing, from examples, the
above steps to achieve the subgoal of finding the average
frequency of an event for problems with different story-
lines (Catrambone & Holyoak, 1990). However, they often
fail to notice that Steps 1 and 2 in the above method could

also be viewed as a method for achieving the subgoal of
finding the total frequency of the event (e.g., total number of
briefcases owned). As a result, learners often have trouble
finding the average frequency of an event when a problem
provides the total frequency of that event directly (see
Appendix B), rather than requiring that it be derived from
the frequencies of various event-categories (Catrambone,
1994b; Catrambone & Holyoak, 1990).

If a person learns the subgoal “find the total frequency of
the event,” he or she might be better able to find A in a novel
problem that requires a change from the examples in how
total frequency is found. For example, in the method dis-
cussed earlier for finding the average number of briefcases
owned per lawyer, it might be better if the learner’s method
for finding A was organized as follows:

Goal: Find A
Method:
1. Goal: Find total number of briefcases.
Method:

a. Multiply each event-category by its observed
frequency.

b. Sum the results to obtain the total number of
briefcases.

2. Divide the total number of briefcases by the total
number of trials to obtain the average number of
bricfcases per lawyer.

Experiment 1

In Experiment 1, I examined subgoal learning by manip-
ulating whether a set of steps was labeled. It was assumed
that if learners see a label for a set of steps, they are more
likely to link those steps to a common subgoal. Subgoal
learning was then assessed in two ways. In the first, 1
analyzed transfer performance-—how successfully students
found A—on novel problems by students who were hypoth-
esized to have learned or not to have learned the subgoal of
finding the total frequency of an event. In the second, I had
these students describe how to solve problems in the Pois-
son domain. If the descriptions of students in the label
condition included statements such as “find the total fre-
quency” and if these were the students who also solved the
novel problems more successfully, then this would provide
converging evidence that these students learned that
subgoal.

In this experiment the no-label group studied examples
demonstrating the weighted average method for finding A
(see Appendix A, the no-label solution). The label group’s
examples differed in that the steps for finding the total
frequency were explicitly labeled rather than merged with
the overall set of steps for finding A (sce Appendix A, the
label solution).

In the test phase students were asked to (a) describe how
they would teach someone to solve problems like the ones
they had studied and (b) solve problems requiring the use of
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* the weighted average method to find A or a method in which
the total frequency was supplied directly (see Appendix B).

Predictions

It was hypothesized that the label group would be more
likely than the no-label group to to learn the subgoal to find
the total frequency. As a result, students in the label group
should be more likely than students in the no-label group to
mention the idea of finding a total frequency in their de-
scriptions. It could be argued that this is a trivial prediction
because the label group could simply be repeating a label or
a generalization of a label from the examples. Nevertheless,
if the students who mention the idea of finding total fre-
quency are primarily those in the label group and if these
students produce superior transfer performance on problems
that provide the total frequency directly, then support would
be given to the claims that labels aid subgoal learning and

ghat subgoals aid transfer.

No difference was predicted between the groups in the
frequency of mentioning the notion of finding an average
(or A) in their descriptions because all examples mentioned
the term average in the solutions.

Both groups were predicted to be quite successful solving
transfer problems that were isomorphic to the training ex-
amples. The label group was expected to perform better than
the no-label group on test problems that provided the total
frequency directly ratherithan requiring that it be calculated.

Method

Participants. Participants were 48 students recruited from an
introductory psychology class at the Georgia Institute of Technol-
ogy who received course credit for their participation. None of the
students had taken a probability course before participating in the
experiment.

Materials and procedure. Al students initially studied a cover
sheet that briefly described the Poisson distribution and how it
could be used as a replacement for more cumbersome techniques
for calculating probabilities involving events that can be catego-
rized as successes and failures. The Poisson equation was pre-
sented, and a simplified notion of a random variable was also
presented.

Students were randomly assigned to one of two groups. The
Jabel group (N = 25) studied six examples demonstrating the
- weighted average method for finding A in which the steps for

finding the total frequency were explicitly labeled (see the label
solution in Appendix A for an example). The no-label group’s
(N = 23) examples differed in that the steps for finding the total
frequency were not labeled (see the no-label solution in Appendix
A). The labels scen by the students in the label group were specific
to the context of the problem (e.g., “total number of briefcases

-'owned”) and were not phrased at a general level (c.g., “total
- frequency”) so that I could minimize additional explicit general
domain instruction.

After studying the examples, students were asked to describe
- bow to solve problems in the domain. The instructions were:

Suppose you were going to teach someone how to solve
Poisson distribution problems of the types you have just
studied. Please describe the procedure or procedures you
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would give someone to solve these problems. Please be as
complete as possible. Please do not look back at the examples.

After writing their descriptions, students solved three test prob-
lems that required the use of the weighted average method for
finding A (isomorphic to the example in Appendix A), and then
they solved three test problems in which total frequency was given
directly (and thus A could be found by simply dividing the given
number by the total number of trials). The latter type included the
problem in Appendix B and two problems isomorphic to it. Stu-
dents were told not to look back at the examples when solving the
test problems.

Students’ written solutions were scored for whether they found
A correctly. In addition, students’ descriptions of how. to solve
problems in the domain were scored for two primary features: an
explicit mention of trying to find the total frequency and an
explicit mention of trying to find an average. Two raters inde-
pendently scored the descriptions and problem solutions and
agreed on scoring 94% of the time. Disagreements were resolved
by discussion.

Results

Students were given a score of 1 for a given problem if
they found A correctly and a score of 0 otherwise. The
scores for the three problems that were isomorphic to the
training examples, Problems 1-3, were summed, thus giv-
ing students a score ranging from 0 to 3 for their perfor-
mance on those problems. Similarly, the scores for the three
novel problems, Problems 4-6, were summed, thus giving
students a score ranging from 0 to 3 for their performance
on those problems. '

Transfer as a function of group. As expected, both
groups did quite well at finding A on test problems that were
isomorphs to the training examples (Problems 1-3), and
there was no significant difference in performance, F({,
46) = 0.28, p = .60, MSE = .40. The average for the label
group was 2.9, and the average for the no-label group
was 2.8.

As predicted, however, the label group found A more
successfully than did the no-label group on the three test
problems that involved the new method for finding A (Prob-
lems 4-6), F(1, 46) = 5.32, p = .03, MSE = 1.82. The

. average for the label group was 2.2, and the average for the

no-label group was 1.3. The most frequent mistake that
students made on these problems was to write in the solu-
tion area that not enough information was given to solve the
problem.

Descriptions as a function of group. Students’ descrip-
tions were scored for whether they explicitly mentioned
finding the total frequency and the subgoal of finding the
average or A. As expected, the groups were equally likely to
mention finding the average (label, 60% and mno-label,
65%), ¥A(1) = 0.14, p = .71. As predicted, the label group
mentioned finding total frequency more often than did the
no-label group (52% vs. 13%), (1) = 8.18, p = .004.

Transfer as a function of descriptions. Students who
mentioned finding the total frequency in their descriptions
(N = 16) tended to perform about the same on the isomor-
phic test problems when compared with students who did
not mention it (N = 32), F(1, 46) = 1.70, p = .20, MSE =
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0.39 (Ms = 3.0 and 2.75, respectively). As predicted, stu-
dents who mentioned finding the total frequency did better
than did the other students at finding A on test problems that
required the new method for finding A, F(1,46) = 5.52,p =
02, MSE = 1.81 (Ms = 2.38 and 141, respectively).

Students who mentioned finding the average in their
descriptions (N = 30) did not perform significantly differ-
ently on the isomorphic test problems when compared with
students who did not mention it (N = 18), F(1, 46) = 2.06,
p = .16, MSE = 0.39, (Ms = 2.93 and 2.67, respectively).
There was also no significant difference between these
groups at finding A for the problems that required the new
method for finding A, F(1, 46) = 0.20, p = .66, MSE = 2.02
(Ms = 1.80 and 1.61, respectively).

Discussion

Students in the no-label group were not able to find A as
successfully in the novel problems (Problems 4-6) as were
the students in the label group. This result suggests that
students in the label group were more likely to learn the
subgoal of finding the total frequency as part of the solution

<structure for solving Poisson distribution problems. As a
-result, the students in the label group were able to find A in
problems that could not be solved with the steps from the
training examples.

Converging evidence that the students in the label group
had learned the subgoal to find the total frequency comes
from students’ descriptions of how to solve problems. Stu-

~dents in the label group were four times more likely than
students in the no-label group to mention the goal of finding
the total frequency. Both groups mentioned the goal of
finding A equally often which was consistent with the fact
that A was labeled in the training examples for both groups.

It could be argued that those students who wrote descrip-
tions in which they mentioned the subgoal of finding the
total frequency were also people who were simply better at
transfer. However, the finding that the label and no-label
groups had differential far transfer success (i.c., success at
solving problems requiring new or modified steps compared
to the examples) suggests that the training manipulation
affected subgoal learning in addition to any effects that were
due to individual differences.

The results from this experiment are consistent with the
claim that manipulations to examples that promote attention
to subgoals can help students learn those subgoals. Students
in the label group learned the subgoal to find the total
frequency, and this subgoal helped their performance on test
problems that required a new way to find the total fre-
quency. However, this new way was to recognize that the
total frequency was given in the problem. Perhaps a more
stringent test of whether learning a subgoal helps a learner
to achieve it when a novel method is required would be to
give students test problems that require a new method of
calculating total frequency. Experiment 2 was designed to
do this.
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Experiment 2

In Experiment 2, I examined students’ ability to modify
an old method for calculating the total frequency to find A.
As in Experiment 1, the steps for finding the total frequency
were either labeled or unlabeled in the training examples.

The new method for finding total frequency was to add
the frequencies of a number of events rather than to multiply
event- categories by their frequencies and then add the
products (such as the method used in Appendix A). One of
the two test problems requiring this modified method in-
volved children finding seashells on the beach (see Appen-
dix C). The numbers of shells found by a child on Day 1,
Day 2, Day 3, Day 4, and Day 5 are given. The problem
then asks for the probability of a randomly chosen child
finding a certain number of shells. If the label group is more
likely than the no-label group to learn the subgoal of finding
the total frequency, then the students in the label group
should be more successful than the students in the no-label
group at modifying their approach for finding total fre-
quency and thus, finding A in this problem.

" The solutions presented for the training examples were
the same as in Experiment 1 except that the steps for finding
total frequency and finding A were circled, either separately
or together (see Figure 1). Students saw both presentations
for each example and were asked to pick the one they felt
circled the steps that “go together.” It was hypothesized that
if a student learned the subgoal to find the total frequency,
then he or she would be more likely to prefer that the steps

. for finding the total frequency be separated from the step for

finding A. (This is the solution in Figure 1A for the label
students and Figure 1C for the no-label students.)

For each test problem, students were asked to circle the
parts of their solutions that went together. Again, because
students in the label group were predicted to be more likely
than students in the no-label group to have learned the
subgoal to find the total frequency, it was predicted that
students in the label group would be more likely than
students in the no-label group to circle the steps for finding
the total frequency separately from the step for finding A.
Students’ circling performance could provide converging
evidence, along with their transfer performance, for subgoal
learning.

Method

Participants. Participants were 52 students from an introduc-
tory psychology class at the Georgia Institute of Technology who
participated for course credit. None of the students had taken a
probability course before participating in the experiment. Students
were randomly assigned to the label (N = 26) and no-label (N =
26) groups.

Materials and procedure. Both groups studied the same cover
sheet used in Experiment 1 and then studied three examples
jllustrating the weighed average method of finding A. For the label
group, the subgoal of finding the total frequency of the event was
labeled. This subgoal was not labeled for the no-label group. The
examples were a subset of those used in Experiment 1.

Students saw two solutions to each example. The solutions were
identical except for how the steps were circled. For instance, for
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.. A.Label Students, Circled Separately

Gﬁl—;ﬂ;;f briefcases owned = [1(180) + 2(17) + 3(13) + 49)l=

(X) =';'18'9Q = 1.32 = A = average number of briefcases owned per lawye
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B. Label Students, Circled Together

Total number of briefcases owned = [1(180) + 2(17) + 3(13) + 4(9)] = 289

E(X) = 219 = 1.32 = A = average number of briefcases owned per lawyer

2
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C. No-Label Students, Circled Separately
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D. No-Label Students, Circled Together *

(X) = 1(180) + 2(1;)1; 3(13) + 409) =%§'2' =1.32=X =averagcnumberofbriefcasesownedperlawycr
A .1.32,,1.322
AX 2.718 .27)(1.74
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Figure 1. Example solutions for the problem in Appendix A in which the steps for finding the total
frequency and A are circled cither separately or together in Experiment 2.
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the training example in Appendix A, students in the label group
saw the solutions in Figures 1A and 1B, whereas students in the
no-label group saw the solutions in Figures 1C and 1D. Students
were given the following instructions: .

For each example, please note that the solution is presented
twice. The two presentations of each solution have the steps
circled. The circles are used to indicate steps that might “go
together.” For instance, suppose you were following a recipe
for cooking something. Perhaps the first three steps of the
recipe involved putting various ingredients into a bowl and the
fourth step involved stirring the ingredients with a spoon and
the fifth step involved using a blender to finishing the mixing.
You might draw a circle around the first three steps because
they involve “adding ingredients,” and you might draw a
circle around the the fourth and fifth steps because they
involve “blending the ingredients.” The two solutions for each
example are identical except that different steps are in the
circles. For each example, indicate whether Presentation 1 or
Presentation 2 is the one with which you most agree.

As a counterbalancing measure, the solutions that had the steps
for finding the total frequency and A in the same circle came first
for half of the students in each group, whereas for the rest of
the students the solution that had the steps for finding the total
frequency and finding A circled separately came first. The solu-
tion order had no effect on students’ preferences for solutions or
on transfer performance, and thus, was collapsed over for all

;-analyses.
After studying the examples, students solved five target prob-
ems. The first was a weighted average problem isomorphic to the
. examples. The second also involved finding A as a weighted
* average; however, the divisor (total number of trials) was not given
directly in the problem. Rather, it had to be found by adding the
pumber of members in each category (see Appendix D). The third

~provided the value of the total frequency directly (see Appendix
B). The fourth and fifth involved a modification of the old method
for finding the total frequency: instead of the total frequency being
found by multiplying the event-categories by their frequencies and
then summing, it was found by adding a set of frequencies (see
Appendix C for an example).

After they solved each test problem students were asked to
circle the steps of their solution that went together. Students were
told not to look back at the examples when working on the test
problems.

Predictions

Training examples solution preferences. Students in the label
group were predicted to be more likely than students in the
no-label group to prefer solutions in which the steps for finding the
total frequency were circled separately from the steps for finding
A. However, it should be noted that the “circled separately” pre-
sentation for the students in the no-label group (see Figure 1C)
looks a bit odd because a set of steps that are part of a fraction arc
circled, and the denominator is left out of the circle. Thus, students
could be predisposed not to choose this presentation.

Transfer performance. It was predicted that both groups would
do well on the first test problem, an isomorph to the training
examples. For the second problem both groups were expected to
perform similarly. Given that the subgoal of finding the number of
trials was not emphasized in the training examples for either group,
performance was expected to be poor. As in Experiment 1, the
label group was predicted to do better at finding A on the third test
problem, which involved the recognition that the total frequency
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was given directly. The label group was predicted to do better on
the fourth and fifth test problems, which involved finding the total
frequency by adding a set of frequencies. The subgoal of finding
the total frequency should have aided students in the label group in
figuring out which steps they needed to modify to find the total
frequency.

Segmenting of solutions to test problems. Students in the label
group were predicted to be more likely than students in the
no-label group to circle the steps for finding the total frequency
separately from the step for finding A in their solutions to the test
problems that involve calculating the total frequency (Problems 1,
2, 4, and 5). No circling difference was predicted between the
groups for the problem in which the total frequency was given
directly (Problem 3) because it would have been rather odd to
circle the given total frequency as a step.

Two raters independently scored the example solution prefer-
ences and problem solutions, and they agreed 88% of the time.
Disagreements were resolved by discussion.

Results and Discussion

Training examples solution preferences. A given stu-
dent invariably chose the same circling scheme across the
three examples (i.e., either the one in which the steps for
finding total frequency and the step for finding A were
circled separately or the one in which they were circled
together). This was not surprising because the training ex-
amples were isomorphs. Thus, students were categorized
into one of two groups: those who preferred separate circles
for total frequency and A and those who preferred that total
frequency and A be in the same circle. As predicted, stu-
dents in the label group were more likely than students in
the no-label group to choose solutions in which the steps for
finding the total frequency were circled separately from the
step for finding A (50% vs. 19%), x’(1) = 5.44, p = .02.

Transfer performance. All but one student, from the
label group, correctly solved the first test problem, a

- weighted average problem isomorphic to the training

examples.

The second test problem was also a weighted average
problem, but the total number of trials, the value that would
be placed in the denominator when calculating A, was not
given directly. Rather, the student had to calculate the total
number of trials by adding the number of workers. As
expected, the proportion of students who found A correctly
in each group did not differ significantly (label, 85% and no
label, 73%), x*(1) = 1.04, p = .31, although the overall
performance was higher than expected.

The third test problem provided the value for the total
frequency directly. As predicted, the label group correctly
found A significantly more often than did the no-label group
(88% vs. 54%), x*(1) = 7.59, p = .006. This replicates the
finding from Experiment 1.

The fourth and fifth test problems required the students to
calculate the total frequency by adding the simple frequen-
cies (e.g., the number of shells found each day). Students
were given a score of 1 for a given problem if they found A
correctly and a score of 0 otherwise. The scores for the two
problems were summed, thus giving students a score rang-
ing from 0 to 2 for their performance on those problems.
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As predicted, the label group found A more successfully
than did the no-label group, F(1, 50) = 4.15, p = .047,
MSE = 0.46 (Ms = 1.50 and 1.12, respectively). Students
who solved these problems incorrectly tended, for example,
to multiply day by number of shells (Problem 4) or write
that not enough information was given. This result suggests
that learning a subgoal does aid a person in achieving it in
a novel problem that requires a modification of an old
method.

Segmenting of solutions to test problems. For each test
problem that required A to be calculated (Problems 1, 2, 4,
and 5), students were given a score of 1 if they circled the
steps for finding the total frequency separately from the step
for finding A in their solution and a score of 0 otherwise.
The scores for the problems were summed, thus giving
students a score ranging from 0 to 4. :

As expected, students in the label group were more likely
to circle the steps for finding the total frequency separately
from the step for finding A in their solutions than were the
gxdents in the no-label group, F(1, 50) = 8.39, p = .006,
MSE = 1.32 (Ms = 1.15 and 0.23, respectively).

‘Also as expected, there was no difference between the
groups on Problem 3 in which the total frequently was
provided directly, x*(1) = 2.08, p = .15. Only two students,
both in the label group, circled the total frequency. The rest
of the students simply circled the entire set of calculations
that they used for finding A (if they found a value for A).

Experiment 3

“The results from the first two experiments are consistent
with the interpretation that the design of examples- that
promote attention to subgoals can be successful in helping
students to learn those subgoals and to transfer more suc-
cessfully. In both experiments a labeling manipulation was
used to promote attention to the subgoals. However, the
examples containing a label for total frequency differed
from the no-label examples in an additional way: The steps
for finding total frequency were on a separate line from the
rest of the steps for finding A. Thus, it is possible that this
visual isolation either by itself or in combination with the
label, produced the superior transfer. Perhaps manipulations
that lead learners to group a set of steps will make those
fearners more likely to form a subgoal to relate those steps.
in Experiment 3, I examined this possibility with four
groups of students.

The visual-isolation group studied example solutions such
as the one in Appendix E (this is a solution to the problem
in Appendix A) in which the total frequency steps were on
their own line without a label. The separate-line label group
studied example solutions isomorphic to those seen by the
label group in Experiment 1 (see Appendix A). Note,
though, that this solution style, besides labeling the steps for
finding the total frequency, places those steps on a separate
line from the rest of the steps for finding A. Thus, students
in this group saw solutions that involved both labeling and
visual isolation. To examine whether there was any inter-
action between labeling and visual isolation, I had the

same-line label group study examples that had the steps for
finding the total frequency labeled but had those steps
located on the same line as the rest of the steps for finding
A (see Appendix E). Finally, a no-label group analogous to
the group from Experiment 1 (see Appendix A) was in-
cluded as a baseline.

According to the label view, the label is primarily respon-
sible for subgoal learning. Thus, students who study exam-
ples in which the steps for finding total frequency are
labeled—the separate-line label and the same-line label
groups—should outperform the visual-isolation and no-
label groups on transfer problems because the steps for
finding total frequency were not labeled in the examples
studied by the latter two groups.

According to the grouping view, grouping—and thus
subgoal learning—is promoted by labeling or visual isola-
tion. Under this view, the label groups and the visual-
isolation group should perform similarly, and all these
groups should outperform the no-label group. Neither view
explicitly predicted an interaction between labeling and
visual isolation. However, if a label and visual isolation are
required for grouping and subgoal formation, then the
separate-line label group should perform better than all
other groups on the transfer problems.

Method

Participants. Participants were 118 students from an introduc-
tory psychology class at the Georgia Institute of Technology who
participated for course credit. None of the students had taken a
probability course before participating in the experiment.

Materials and procedure. All students studied the same cover
sheet used in the prior experiments and then studied two isomor-
phic examples illustrating the weighted average method for finding
. The examples were a subset of those used in Experiment 1.
Fewer study examples were used in this experiment because pilot
testing with students receiving six, three, or two examples showed
no effect of number of examples on performance.

Students were randomly assigned to one of four groups. Students
in the same-line label group (N = 30) had the steps for finding the
total frequency labeled, but the steps were on the same line as the
rest of the steps for finding A. The solution to the problem in
Appendix A studied by the same-line label group is shown in
Appendix E. The separate-line-label group (N = 30) also had the
steps for finding total frequency labeled, but they were on a
separate line from the rest of the steps for finding A. The solution
to the problem in Appendix A that was studied by the separate-line
label group was identical to the one studied by the label group in
Experiment 1 (see Appendix A). The visual-isolation group (N =
29) studied examples in which the steps for finding total frequency
were unlabeled but on their own line (see Appendix E). The
no-label group (N = 29) saw solution types identical to those
studied by the no-label group in Experiment 1 (see Appendix A).

As in Experiment 1, students were asked to describe how to
solve problems in the domain after they finished studying the
examples. After writing their descriptions, students solved three
test problems. The first problem required the use of the weighted
average method for finding A (isomorphic to the example in
Appendix A). The second problem provided the total frequency
directly (see Appendix B). The third problem involved the addition
of simple frequencies to get the total frequency (see Appendix C).
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Students were told not to look back at the examples when solving
the test problems.

Students’ written solutions were scored for whether they found
A correctly. Students’ descriptions of how to solve problems in the
domain were scored for whether the students mentioned trying to
find the total frequency and trying to find an average. Two raters
independently scored the descriptions and problem solutions and
agreed on scoring 90% of the time. Disagreements were resolved
by discussion.

Results and Discussion

Transfer as a function of group.  As expected, all groups
did quite well at finding A on the test problem that was
isomorphic to the training examples. Only two students, one
in the same-line label group and one in the separate-line
label group, solved this problem incorrectly.

For the two far transfer problems, students were given a
score of 1 for a given problem if they found A correctly and

a score of 0 otherwise. The scores for the two problems -

were summed, thus giving students a score ranging from 0
to 2 for their performance on those problems.

There were significant differences among the four groups
with respect to finding A in the novel test problems, F(3,

. 114) = 5.53, p = .0014, MSE = 0.52, with means of 1.7,

1.6, 1.5, and 1.0 for same-line label, separate-line label,
visual-isolation, and no-label groups, respectively. As pre-
dicted by the grouping view, Shaffer (1986) sequential
Bonferroni pairwise comparisons (familywise a = 05)
indicated that both label groups and the visual-isolation
group outperformed the no-label group, all ps < .0167. Also
consistent with the grouping view, but not with the label

* view, was the finding that no reliable performance differ-

ences were found between the two label groups or between
either label group and the visuval-isolation group (all
ps > .05).

Descriptions as a function of group. Students’ descrip-
tions were scored for whether they explicitly mentioned the
subgoal of finding the total frequency and the subgoal of
finding the average or A. As expected, the groups were
equally likely to mention finding A (same-line label, 87%;
separate-line label, 87%; visual isolation, 76%; and no
label, 83%), x*(3) = 1.62, p = .65.

There were significant differences among the four groups
with respect to the frequency of mentioning finding total
frequency, x*(3) = 17.43, p = .0006, with percentages of
43%, 57%, 31%, and 7% for same-line label, separate-line
label, visual-isolation, and no-label groups, respectively.
Consistent with the grouping view and the transfer results,
pairwise comparisons (familywise a = .05) indicated that
the two label groups each mentioned finding total frequency
more often than did the no-label group (both ps < .0167, as
did the visual-isolation group (p < .0167, one-tailed). Dif-
ferences among the separate-line, same-line, and visual-
isolation conditions were not statistically significant accord-
ing to the Shaffer (1986) sequential Bonferroni procedure,
all ps > .025.

Transfer as a function of descriptions. As expected,
there were no significant performance differences on the
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novel test problems between students who mentioned find-
ing A (N = 98) and those who did not (N = 20), F(1,
116) = 1.04, p = .31, MSE = 0.57 (Ms = 1.5 and 1.3,
respectively).

Students who mentioned finding the total frequency (N =
41) were more successful than other participants (N = 77)
at finding A on the novel test problems, F(1, 116) = 5.77,
p = 018, MSE = .55 (Ms = 1.7 and 1.3, respectively).

The results of Experiment 3—similar transfer perfor-
mance by the label groups and visual-isolation groups, and
better performance than the no-label group—support the
grouping view of subgoal formation and also suggest that
there is no apparent interaction between labeling and visual
isolation on subgoal formation. The tendency of the label
and visual-isolation groups to mention finding total fre-
quency in their descriptions more often than the no-label
group is also consistent with the claim that these students
were more likely to form a subgoal for finding total
frequency.

Finally, students who mentioned finding total frequency
in their descriptions showed better transfer on the novel
transfer problems. Students in Experiment 1 who mentioned
total frequency also transferred better on the novel prob-
lems. In addition, in a prior study (Catrambone, 1994b) 1
also found this relationship between descriptions and trans-
fer performance. Together, these studies suggest that stu-
dents’ descriptions provide a potentially useful measure of
subgoal learning. The transfer and description results pro-
vide converging evidence for the hypothesis that manipula-
tions that encourage grouping enhance subgoal learning and
thus, transfer.

General Discussion

Learners’ problem-solving knowledge in domains such as
probability often seems to be focused on the mathematical
steps illustrated in training examples. This translates into
poor performance on transfer problerns. If subgoals could be
conveyed to learners, then learners should be more success-
ful on novel problems. One way these subgoals can aid
learners is by guiding them to the steps in the old solution
procedure that need to be changed to achieve the subgoals in
a novel problem.

Al three experiments presented here suggest that if peo-
ple are led to learn a subgoal, in this case either by studying
examples that label the steps that achieve the subgoal or by
visually isolating those steps, then they are more likely to
successfully achieve it in a novel problem. It is impressive
to find a performance difference between the label and
visual-isolation groups compared with the no-label groups
given that the new methods for finding the total frequency
in the test problems were seemingly straightforward: adding
a set of frequencies or recognizing that the total frequency
was given directly. This may partly be an effect that is due
to Einstellung or mechanization (Luchins, 1942): Students
may have been biased against altering a memorized set of
steps.

Besides transfer differences, the experiments provide ad-

ditional evidence that manipulations that encourage group-




14 RICHARD CATRAMBONE

ing can help people learn subgoals. Across Experiments 1
and 3, descriptions given by students in the label and
visual-isolation groups of how to solve Poisson problems
mentioned the goal to find the total frequency more often
than did descriptions given by students in the no-label
group. In Experiment 2, students in the label group pre-
ferred, more than did students in the no-label group, exam-
ple solutions that separated the steps for finding total fre-
quency from the step for finding A. Students in the label
group were also more likely than were students in the
no-label group to circle the total frequency steps as a unit in
their solutions to the test problems.

The superior transfer performance of the label and visual-
isolation groups across the experiments is particularly im-
pressive in light of the extensive elaboration provided to
students in the study by Catrambone and Holyoak (1990). In
that study, the overall transfer advantage for students re-
ceiving elaboration, although not reliable across all far
transfer problems, was in line with performance by students
inkhe label and visual-isolation groups in the present study
who received a much more minimal manipulation. Thus, it
appears that the label and visual isolation manipulations
may be distillations of the information that provided the
most benefit in the earlier study.

Related problem solving research by Reed et al. (1985)
and Ross (1987, 1989) demonstrates that learners become
attached to superficial details and mathematical procedures
of examples in lieu of acquiring more generalized knowl-
«edge about how to solve problems in a particular domain.
Although Reed et al. attempted to provide elaborations to
help students go beyond the mathematical details of the
training problems, they found poor performance on far
transfer problems. The elaborations, though, may have
failed to provide support for subgoal learning. The results of
the present study suggest that a large amount of elaboration
is certainly not the key to improving transfer from examples
(see also Kieras & Bovair, 1984); rather, the additional
information can be quite minimal if it focuses on the right
kind of knowledge. This knowledge can be fruitfully con-
ceptualized as subgoals.

Implications

The results strongly suggest that learners are often unable
on their own to make a set of mathematical steps meaning-
ful. Rather, students need help from either a teacher or
textbook. This is an important finding because some edu-
cators may have a tendency to assume that the meaning of
a set of steps is obvious and that the students will surely
recognize their overall purpose. This assumption may be
wrong much more often than educators would like to
believe. .

Even when educators recognize the value of subgoals,
they might not be skilled at identifying the best ones for a
particular problem-solving domain, especially in areas such
as math and physics. For instance, Chi et al. (1989, p. 149)
discussed a problematic mechanics example from a text-
book. In the example, a block was suspended from a ceiling

by two pieces of rope joined at a knot and by a third piece
of rope going from the knot to the block. The task was to
find the magnitude of two of the forces given the third force.
The solution states that the knot where the three strings are
joined should be considered the body. However, no expla-
nation was given as to why this decision was made. The
decision was made because to find a force in terms of other
forces, the student must determine that the forces act on a
common point. In this problem the only place where all
three forces act was the knot. This critical subgoal of finding
a common point where the forces were acting was informa-
tion that would have been useful for students to have when
solving future problems. However, instead of conveying
this subgoal, the example was more likely to convey a series
of steps that may or may not have been useful for other
problems.

There may not exist a correct set of subgoals to be learned
for a particular domain. Researchers might show one set to
be more effective than another by looking at the problem-
solving performance of students taught one set or the other.
Thus, educators who differ in opinion about the usefulness
of certain subgoals can explicitly compare their subgoal sets
because the educators are at least using a common cognitive
language.

The present study provides some information on this
issue. Across the studies most students formed the subgoal
to find A. However, this subgoal was not all that useful to
the students for solving novel transfer problems. If it were,
then students in the no-label group should have successfully
found A in those problems as often as did the other students.
That the no-label group did not suggests that learning the
lower level subgoal of finding total frequency was crucial
for transfer success. It is not clear whether an appropriate
level can be proven or derived with a logical analysis or a
cognitive architecture, but it is an interesting issue for future
research.

Besides differing on which subgoals they believe are the
most useful to teach, educators and researchers might also
be unclear about the best ways to aid subgoal learning. The
current results indicate that labeling and visual isolation can
be effective techniques.

Extensions

Whereas the current results suggest that examples can be
improved to aid problem-solving transfer, Chi and her col-
leagues (e.g., Chi & Bassok, 1989; Chi & VanLehn, 1991)
suggested that educators can improve learning by teaching
students to produce better self-explanations. Chi showed
that individuals vary in terms of what kinds of information
they extract from examples. In fact, students in the present
study may have varied in what they learned from examples
regardless of the experimental manipulations. That'is, stu-
dents who learn easily could have learned the goal to find
the total frequency on their own when studying the exam-
ples regardless of the manipulation, whereas the students
who have difficulty learning might have been less likely to
do so (e.g., Chi et al., 1989). Unfortunately, no a priori
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information was collected by which to classify students in
the experiments presented here. As a result, it is possible
that the effects of the manipulations might have been
clouded. In future experiments similar to the ones presented
here, researchers could segregate students into those who
leamn easily and those who do not (by means of SAT scores
or performance on some prior task) and examine whether
the manipulations affect both groups in the same way.

Researchers could further test the subgoal approach by
teaching learners subgoals that are hypothesized not to
match well with the subgoals needed to solve test problems.
These learners should perform as poorly as, or perhaps
worse than, learners who simply memorized a set of steps.
That is, if subgoals are used to guide problem solving
performance, then inappropriate subgoals should hinder
transfer.

It is suggested here that an important factor for educators
interested in promoting transfer is to ensure that somehow
the relevant subgoals for a domain are conveyed to leamers.
This implies that a crucial early step in teaching problem
solving in a domain is for teachers to spend time identifying
to themselves the useful subgoals from a novice’s perspec-
tive. How might this be done? One possibility is to first
identify a target set of problems that the instructor wants the
students to be able to solve. Then the instructor should write
out the solutions to these problems and analyze them to
determine the subgoals achieved by groups of steps that
constitute the solution procedures to the problems. Clearly,
it will be important for researchers to find a standardized
way of identifying subgoals that are to be taught. This might
be a difficult task, but one that could greatly benefit teach-
ing and learning.
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Appendix A

Training Example Used in Experiment 1 With No-Label and Label Solutions

A judge noticed that some of the 219 lawyers at City Hall owned more than one briefcase. She counted the number of briefcases each
lawyer owned and found that 180 of the lawyers owned exactly 1 briefcase, 17 owned 2 briefcases, 13 owned 3 briefcases, and 9 owned
4 briefcases. Use the Poisson distribution to determine the probability of a randomly chosen lawyer at City Hall owning exactly two

briefcases.

a. No-Label Solution:
1(180) + 2(17) + 3(13) + 4(9) 289
X) = = — = 1.32 = A = average number of briefcases owned per lawyer
. 219 219
(C'09)
PX=x)=
x!
[@71873)(1.329)]  (27)(1.74)
PX=2)= = = 235
) 2!
b, Label Solution:

Total number of briefcases owned = [1180) + 2(17) + 3(13) + 4(9)] = 289
289
EX) = 719 = 1.32 = A = average number of briefcases owned per lawyer

[(e™ M)

PX=x)=
x!

B [(@718°19)(1329] _ (27)(174)
2! B B

235

P(X=2)

Appendix B

Test Problem in Which Total Frequency Is Given Directly

A number of celebrities were asked how many commercials they made over the last year. The 20
celebrities made a total of 71 commercials. Use the Poisson distribution to determine the probability
that a randomly chosen celebrity made exactly 5 commercials.

Solution (not seen by students):
71
EX) = 2 = 3.5 = A = average number of commercials per celebrity

[2.71873%)(3.55%)] _ (029)(563.8) _
5! T 120

135

PX =35)=

Appendix C

Test Problem in Which Total Frequency Is Calculated by Adding Simple Frequencies (Experiment 2)

Over the course of the summer, a group of 5 kids used to walk along the beach each day collecting
seashells. We know that on Day 1 Joe found 4 shells, on Day 2 Sue found 2 shells, on Day 3 Mary
found 5 shells, on Day 4 Roger found 3 shells, and on Day 5 Bill found 6 shells. Use the Poisson
distribution to determine the probability of a randomly chosen kid finding 3 shells on a particular

day.
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Solution (not seen by students):
4+2+5+3+6 20
5 = r3 = 4.0 = A = average number of shells per kid
[(2.71874%4.0%] (.018)(64) 105
3! T e

E(X) =

P(X=3)=

Appendix D

Test Problem With Weighted Average Method to Find A but in Which Trials (Denominator) Must Be Found
: by Adding Number of Members in Each Category (Experiment 2)

A construction crew had a varying number of people who knew how to use a jackhammer,
depending on the particular job that was needed. On 10 of the jobs they did, only one person knew
how to use a jackhammer, on 13 of the jobs 2 people knew how to use jackhammers, on 6 of the
jobs 3 people knew how to use jackhammers, and on 7 of the jobs 4 people knew how to use
jackhammers. Use the Poisson distribution to determine the probability of exactly two people in the
crew knowing how to use a jackhammer on a randomly chosen job.

Solution (not seen by students):

1(10) + 2(13) + 3(6) + 47) 82
= = — = 228 = A = average number of “knowers” per job

10+13+6+7 36
- 2718~ 28)(2.28° .102)(5.2
P(X=2)=[( 2‘)( N _( ;( )='265
Appendix E

Instance of Example Solution Studied by the Visual Isolation and Same Line Groups (Experiment 3)
' a. Visual-Isolation Group
- 1(180) + 2(17) + 3(13) + 4(9) = 289

EX) = 219 = 1.32 = A = average number of briefcases owned per lawyer

-A
x!
(2718 9)(1.32)] (27)(1.74)
PX=2)= > i =.235

b. Same-Line Label Group
1(180) + 2(17) + 3(13) + 4(9)  total number of briefcases owned 289

219 219 219

= 1.32 = A = average number of briefcases owned per lawyer

-
P (x=x)=[(e YA)

x!

2.7187133)(1.32%)] (27117
P(X=2)=[( 1 2‘)(1 )]=( )(21 4)=.235
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Abstract

Three experiments tested the hypothesis that when learners are led to group steps from
example solutions, they will be more likely to learn subgoals that can be transferred to
novel problems, thereby improving problem solving. The results from each experiment
suggest that a label serves as a cue for grouping by demonstrating that a relatively
meaningless label in an example solution was as effective (and sometimes more
effective) as a meaningful label in helping learners transfer to novel problems.
Experiment 2 provided converging evidence for subgoal learning by demonstrating that
participants studying example solutions with a label were more likely to segment the
solution as a function of the label and were more likely to mention the corresponding

subgoal in their descriptions of how to solve problems.

tion

A good deal of research has examined the transfer success people have after studying

-training materials such as those containing step-by-step instructions (Kieras & Bovair, 1984; Smith

& Goodman, 1984), examples (e.g., Ross, 1987, 1989), or both (Fong, Krantz, & Nisbett,
1986). Although there have been some exceptions (e.g., Fong et al., 1986; Zhu & Simon, 1987),
the usual finding from such research is that people can carry out new procedures or solve new
problems that are quite similar to those on which they were trained, but have difﬁcillty when the
novel cases involve more than minor changes from what they had previously studied.

This transfer difficulty seems to stem from a tendency by many learners to form

representations of a solution procedure that consist of a linear series of steps rather than a more

1Currently under review.
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< structured hierarchy. An advantage of a hierarchical organization is that it can provide guidance for
adapting the procedure for novel cases. One potentially useful hierarchical organization for a
solution procedure would be a set of goals and subgoals with methods for achieving them (e.g.,
Anzai & Simon, 1979; Card, Moran, & Newell, 1983; Catrambone & Holyoak, 1990; Newell &
‘Simon, 1972; Singley & Anderson, 1989). Problems within a domain typically share the same set
of subgoals, although the steps for achieving the subgoals might vary from problem to problem.
For instance, physics mechanics problems typically share the subgoals of identifying all "systems”
in the problem and identifying all forces acting on the object of interest regardless of whether the
sproblems involve 6bjects on inclined planes 6r blocks suspended over pulleys (Heller & Reif,
*1984).

Consider a student facing a novel problem, that is, one in which the steps are not the same
as those seen in a previously-studied example. If the student has memorized only a rote set of
steps for the overall solution procedure, he or she will have little guidance as to which steps need
to be modified, as well as what new steps might need to be created, in order to solve the problem.
Conversely, a student who learned a solution procedure organized by subgoals and methods could
attempt to apply those subgoals to the novel problem. This approach has two advantages. First,
the learner would know which steps from the learned procedure are relevant for achieving a
particular subgoal. Thus, if those exact steps can not be carried out in the current problem, the
learner knows which set of steps on which to focus for modification. Second, if the learner is
attempting to achieve a particular subgoal and realizes that a modification to the old steps will not

s achieve the subgoal, then the subgoal can help constrain the memory search for other relevant
~information for achieving that subgoal (Anzai & Simon, 1979). Thus, the search space for useful
information would be reduced for the second learner.
ti vi S

A variety of studies have examined the effects on problem solving for learners who form a

hierarchical structure representing a solution procedure (e.g., Dufresne, Gerace, Hardiman, &

Mestre, 1992; Eylon & Reif, 1984). The typical result was that learners were able to solve novel

Page 28




_ problems more successfully than Jearners who were led to form a single-level organization of the

problem solving procedure. In these studies, researchers usually derived what they believed to be
a useful hierarchical approach to problem decomposition and induced learners to internalize this
approach by following a prescribed method for solving or procesSing training problems. Although
these hierarchical approaches were not always couched in terms of subgoals and methods, they
could certainly be viewed in this light.
L For instance, Heller and Reif (1984) formulated a model specifying the underlying
knowledge and procedures needed to successfully solve mechanics problems. This procedural
knowledge included drawing force diagrams for all external forces in a problem and identifying
"short-range" and "long-range" forces. The authors required participants to solve three problems

; by adhering to a hierarchical model (the "M" model) for redescribing each problem in terms of

-relevant forces. This model was designed to address various deficiencies learners demonstrate

| . when attempting to solve mechanics problems. The model was contrasted with the M* model that
intentionally omitted certain levels of the redescription process hierarchy such as checking for
consistency between the direction of forces and the resulting acceleration (learners were not

_ prevented from doing these checks, but they were not reminded to do them). Participants who

..were required to follow the M model performed significantly better at redescribing novel problems -
and solving them.

Heller and Reif (1984) were quick to point out that the M model was only prescriptive and
did not necessarily have any direct relationship to internal representations learners might have
formed by following the model. Itis also the case that besides containing certain high-level
subgoals such as describing motion that the M* model lacked, the M mode! included a number of
Jlow-level "hints," such as reminding learners to include properties such as mass in their drawings,

_that the M* model did not include. Thus, it is not entirely clear whether requiring participants to

focus on a certain prescribed set of subgoals was most responsible for superior performance on

_ new problems or whether the lower-level procedural details were also crucial.
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Brown, Kane, and Echols (1986) found a similar result in the area of short story problems.
Children demonstrated better spontaneous transfer to novel problems if they had focused (either on
their own or through an experimental intervention) on a hierarchical structure, in this case the goal
structure, of the base analog.

Subgoal Leamning

The studies mentioned above focusing on hierarchy learning used fairly powerful

manipulations to induce learners to form different types of organizations. While this approach can
»yield practical implications for instructional manipulations, it provides fewer constraints for models
%of problem solving since it can be difficult to determine which features of the manipulation led to

-performance differences.

The purpose of the present research was to test a model of subgoal learning by examining
the transfer effects due to a manipulation designed to influence whether learners formed a particular
subgoal.

In the present work the assumption is made that learners' knowledge for solving problems
in a domain can be fruitfully represented in terms of subgoals with steps for achieving them. At
one extreme a learner could have a single goal: to solve a particular problem type. This goal
would be achieved by a linear series of steps. Towards the other extreme would be a solution
procedure broken into a number of subgoals, each with an associated method for achieving it.

Each method would consist of a small number of steps relative to the total number of steps in the

entire solution procedure.

# Transfer to novel problems is assumed to be at least partly a function of applying subgoals
*iearned from prior problems or examples to a new problem. Thus, manipulations designed to
affect whether or not a particular subgoal is learned should affect a person’s ability to solve novel
problems.
The notion of a subgoal is sometimes applied to a construct generated by a learner when he
or she reaches in impasse during problem solving (e.g., Newell, 1990, Chap 4; VanLehn, 1988)

and is sometimes used to refer to a feature of a task structure that can be taught to a learner (e.g.,

Page 30




_ Catrambone & Holyoak, 1990; Dixon, 1987). Both views converge on the prediction that learning
. subgoals can help one transfer more successfully to novel problems. The factors that affect
subgoal learning remain unclear though.
E Influencing Subgoal I .
Many models of transfer posit the existence of subgoals but do not necessarily explain how
they are learned or formed. Anzai and Simon (1979) offered an account of subgoal learning in the
: context of a person learning to solve ﬁe Tower of Hanoi problem. They recorded the moves and
verbal protocol of the learner as she solved the problem multiple times. Two observations from
that study are related and particularly relevant to the present research. The first is that over trials
the learner began to chunk groups of moves, that is, she would make a set of moves in quick
=:succession followed by a pause before the next set of moves. The second is that she appeared to
. form goals and subgoals in her representation of the procedure for solving the Tower of Hanoi
problem.

Anzai and Simon argued that subgoal acquisition is not trivial and its occurrence is greatly
aided when the search space (e.g., possible moves in the Tower of Hanoi problem) is sunphﬁed
This simplification will frequently initially require prior knowledge of the learner of certain facts

' that can be applied to the domain. In the case of the Tower of Hanoi, such a fact might be that
move repetitions are inefficient. When the search space is simplified, working memory load is
reduced.

One hypothesized advantage of a working memory load reduction is that the learner is
.bettcr able to notice and remember a sequence of steps that led to a particular outcome (see also
Sweller, 1988). In Anzai and Simon's model this aids subgoal formation because a subgoal is
formed when a leamer is working towards a certain goal (perhaps derived from task instructions)
and notices that a set of steps places him or herin a situation to be able to carry out additional steps
that ultimately achieve the goal. The learner will be better able to notice the result of the first set of

steps, and be able to chunk that sequence of steps, if working memory load has been reduced.
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5. Akey component in Anzai and Simon's model is the presence of a perceptual system that
allows the learner to observe various external features of the problem situation. In the case of the
Tower of Hanoi problem, one feature would be, for example, a particular disk being located next
to a smaller disk. However, in learning tasks that are less obviously perceptually oriented, such as
learning to solve word problems in probability, physics, or algebra, simple perceptual features are
less likely to play a key role in subgoal formation. Rather, cues in worked examples and the
learner's background knowledge will play a larger role. These;, cues may take the form of text and

diagrams in the problem that direct the learner to relevant aspects of the problem and relevant prior

«knowledge (cf. Ward & Sweller, 1990). The cues can direct the learner to group a set of steps in
the example solution and thus, to increase his dr her chances of recognizing that a particular
outcome is the result of the execution of those steps. That is, the recognition of the grouping is
hypothesized to lead the learner to try to uncover the purpose of the group of steps. This
"purpose” can be conceptualized as a subgoal. One such cue that could encourage grouping, and
thus subgoal learning, is a label.

Labels Aid Categorization. Wattenmaker, Dewey, Murphy, and Medin (1986) found that
providing learners with a theme (e.g., think of objects in one category as being or not being
reasonable substitutes for a hammer) during a training session helped them learn categories more
quickly (see also Cabrera & Billman, 1994; Homa & Cultice, 1984). Medin, Wattenmaker, and
Hampson (1987) found that learners tended to sort a set of items around a single primary
dimension or sometimes correlated features for which causal or explanatory links could be readily

: made. When themes (e.g., flying) were made more salient to leamers, they tended to categorize

..more on family resemblance than individual features. These results suggest that features of
example solutions that help learners form links, such as causal or explanatory ones, among items
will help learners form a category that captures a useful relationship about the items. Thus, with
respect to learning solution procedures, cues that help learners determine which steps go together

and what their purpose is, might aid the formation of a subgoal representing the steps’ purpose.
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The hypothesized benefits of labels for subgoal learning are also consistent with Fried &
Holyoak's (1984) category density model. Their model assumes that the goal of the category
learner is to develop a schematic description of the distributions of category exemplars overa
feature space. Highly salient features will tend to be encoded initially since, in an unfamiliar
domain, the leamer will probably have trouble identifying less salient features. In problem
solving, these less-salient features constitute the deep structure of problems. For instance, when
learners study examples in domains such as probability and physics, they tend to focus on familiar
surface features such as basic mathematical operations and objects (e-g., multiplying a set of
numbers, blocks on inclined planes) rather than goals being achieved by the operations such as
determining the forces acting upon the object of interest (Chi, Feltovich, & Glaser, 1981).

_';Manipulations that help learners focus on meaningful sets of steps could lead learners to discover
% the emergent deep structure.
W i f Vv 1

Wattenmaker et al. (1986) suggested that the degree of difficulty in learning a particular
category structure is at least partly a function of the type of knowledge that learners bring to the
task. With respect to the present work, subgoals influence the knowledge a learner brings to the

- task of solving a novel problem by reducing the search space that is explored while the learner tries
to modify an old solution procedure.

A particular subgoal will have a set of steps, or method, associated with it, and if the
learner discovers that those steps can not be used on a particular problem, he or she will have a
reduced search space to consider when trying to adapt the method. That is, the learner knows on
which steps to focus for changing the procedure. Conversely, a learner who has learned a solution
procedure consisting of a single goal with a long series of steps will be less likely to determine
successfully which steps need to be modified in order to solve the problem because the search
space of possible modifications will be larger. In'a more extreme case, if a particular subgoal
needs to be achieved in a very different way than was demonstrated in the example (i.e., new steps

are required rather than a modification of old steps), the learner possessing a representation with
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subgoals will have some guidance about what prior knowledge might be relevant to achieving the
subgoal. The learner who memorized only a series of steps will be less likely to know what
knowledge he or she possesses might be useful. Thus, a person representing a solution procedure
in terms of subgoals and steps for achieving the subgoals has a more flexible procedure than a
person representing the procedure as a single long series of steps.

For instance, in the probability examples used in the current study, the ultimate goal of each
problem is to calculate a probability. The solution procedure for achieving this goal involves a
number of steps, a subset of which constitutes a sequence of multiplication and addition operations

that can be grouped under the subgoal "find the total frequency of the event."

Consider the "No Label" solution to the probability example in Table 1 involving the
Poisson distribution.! A learner could study this example and memorize the steps for solving a
problem that involves the same set of steps even if the new problem involved farmers and tractors
instead of lawyers and briefcases. After studying the No Label solution, the learner's knowledge

for the part of the solution procedure that involves finding A, the average, might be represented as:

Goal: Find A
Method: 1. Multiply each category (e.g., owning exactly zero briefcases‘,
owning exactly one briefcase, etc) by its observed frequency.
2. Sum the results.

3. Divide the sum by the total number of lawyers to obtain the

average number of briefcases per lawyer.

This representation would serve the learner well for problems that involve calculating Ain
the same way as the example. However, this representation fails to capture the fact that the first
line of the No Label solution in Table 1a also involves calculating a total frequency. Finding the
total frequency is a subgoal that might be achieved in a variety of ways depending on the givens in
the problem. A novel problem that requires finding total frequency in a different way than in the

example might cause problems for the learner with the above representation. For instance,
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consider the problem in Table 2a. In this problem the total frequency is calculated by adding a set
of simple frequencies. This is a less-complex method than was used in the example, but the
learner might not be able to construct it because the subgoal for finding the total frequency, and an
instance of a method for achieving it, were never isolated. If the learner had formed the following
representation, then his or her chance of solving the problem in Table 2a might be better since this
mpresentaﬁon identifies the steps involved in finding the total:

Goal: Find A
Method: 1. Goal: Find total number of briefcases
Method: a. Multiply each category by its observed
frequency.
b. Sum the results to obtain the total number
of briefcases.
2. Divide the total number of briefcases by the total number of

lawyers to obtain the average number of briefcases per lawyer.

Insert Tables 1 and 2 about here

Catrambone (in press) found that leamners studying the "Meaningful Label" solution (Table
1b) to the example were more likely than No Label learners (who studied the solution in Table 1a)
to find the total frequency as measured by their success at solving problems such as the one in
Table 2a. This was taken as initial evidence that the former group had learned the subgoal to find
the total frequency.

The account proposed in Catrambone (in press) for why the Label group was.more likely

“than the No Label group to learn the subgoal to find the total frequency could be summarized as

follows:
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. . _l) A labe] leads learners to group a set of steps (such as the steps for finding the
total frequency).
2) After grouping the steps, learners are likely to try to self-explain why those steps
go together.
3) The result of the self-explanation process is the formation of the goal that
represents the purpose of that set of steps.

While most learners can presumably engage in a self-explanation process, with varying
degrees of success, good students seem better at determining the appropriate boundaries between
+ meaningful groups of steps in a solution procedure (Chi, Bassok, Lewis, Reimann, & Glaser,
-1989). The use of a label in examples is hypothesized to serve as a cue to the boundaries. Thus,
* Label participants in Catrambone (in press) were helped presumably to focus on the steps that
formed a coherent unit (finding a total) whereas the No Label participants were not.

While the results of Catrambone (in press) were consistent with the above account, they did
not constitute a strong test of the account. That is, it is possible that part of the transfer advantage
enjoyed by the Label group could have been due to the fact that the label itself provided information
beyond serving as a cue to group a set of steps. That is, the label indicated that the total number of
briefcases was being found. Thus, instead of the label leading learners to group a set of steps and
inducing a self-explanation process, it may simply have provided them with this fact: finding the
total number of things is something that one does when solving Poisson problems (it is assumed
that college-aged learners are sophisticated enough to generalize "briefcase” to "things").

One way to tease apart these possible explanations is to provide learners with labels that
‘contain no explicit information about the domain and examine whether transfer performance isas
good as transfer performance by learners who study examples with more meaningful labels. This
is the general approach taken in the experiments in the present study.

Experiment 1 explored the possibility that a label has to have some meaning in order for the
Jearner to learn a subgoal as opposed to a simply serving as a cue for the learner who then uses
background knowledge to construct the subgoal. Experiment 2 sought converging evidence for

subgoal learning to supplement the evidence from transfer performance. Experiment 3 explored
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the generality of the subgoa] that is formed from a semantically meaningful label compared to one
formed from a less-meaningful label.
Leaming from Examples
The present study examined learners acquiring subgoals by studying examples rather than
through direct instruction of those subgoals. There were two primary reasons for this approach.
First, people typically prefer to study and use worked examples, or problems they have previously
solved, when attempting to solve new problems (e.g., LeFevre & Dixon, 1986; Pirolli &
Anderson, 1985) despite the fact that they are frequently misled by surface features of the examples
and problems (e.g., Ross, 1987, 1989). -
- Second, there is evidence that students, at least good students, can derive knowledge from
- examples that they did not or could not acquire from explanatory text, even if the text was formally
zcomplete. Chi et al. (1989) found that after studying a text on mechanics, good and poor students
(as defined by a subsequent problem solving test) seemed to possess similar declarative
knowledge. However, after studying worked examples, good students were more likely to acquire
knowledge about, among other things, the conditions of application of actions or operators, the
-consequences of these actions, and the relationship of the actions to goals. Chi et al. suggested
that this additional problem solving or procedural knowledge was the result of a self-explanation
process. Good students were far more likely than poor students to produce self-explanations
leading to the acquisition of this knowledge. One reason good students were more likely to do this
is because they could better recognize the locations in examples that contained unexplicated actions.
From an educational point of view, there are two responses to the findings of Chi et al.
One is to find ways to help poor students improve their self-explanation skills so that they can
derive more from examples. The second, and the one chosen here, is to find ways to improve
.examples to help all leamers derive useful information, such as subgoals, from examples. In the
present work, this is done through cues in example solutions that could help learners group steps

that they otherwise might not realize were related.
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& ‘ T " - < Experiment 1
Experiment 1 examined the role of label meaningfulness in subgoal learning. In this

experiment the No Label group studied examples demonstrating the weighted average method for
finding A (all solutions in Table 1 demonstrate this type of solution). The Meaningful Label and
Less-Meaningful Label groups' examples differed in that the steps for finding the total frequency
were explicitly labeled rather than merged with the overall set of steps for finding A (see Tables 1b
and 1c for instances of the "Meaningful Label" and "Less-Meaningful Label" solutions,

- respectively).

Subgoal learning was assessed by how successfully participants found A on test problems
such as those in Table 2. The presence of a label was not hypothesized to improve learners' ability
to memorize the solution procedure since they were allowed to work at their own pace. Thus, the
No Label group was predicted to be as successful as the label groups at solving transfer problems
that were isomorphic to the training examples. If learners receiving examples with labels solve
novel problems more successfully than the No Label group, this would be consistent with the
hypothesis that the presence of a label, rather than its meaningfulness, was sufficient to induce
subgoal learning. If the Meaningful Label group outperforms the Less-Meaningful Label group,
this would suggest that the meaningfulness of the label affected the likelihood of forming a

domain-relevant subgoal or aided transfer in some other way.

Method
Participants. Participants were 100 students recruited from an introductory psychology

class at the Georgia Institute of Technology who received course credit for their participation.
None of the students had taken a probability course prior to participating in the experiment.
Materials and Procedure. All participants initially studied a cover sheet that briefly
described the Poisson distribution and how it could be used as a replacement for more cumbersome
techniques for calculating probabilities involving events that could be categorized as successes and

failures. The Poisson equation was presented along with a simplified notion of a random variable.
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Participants weré randomly assigned to one of three groups. The Meaningful Label group
(N = 34) studied three examples demonstrating the weighted average method for finding A in
which the steps for finding the total frequency were given a label that was assumed to have
meaning to the participants and made mathematical sense given the steps that preceded it (see the
"Meaningful Label Solution" in Table 1b for an example). The Less-Meaningful Label group (N =
34) studied examples in which the steps for finding the total frequency were labeled with Q which
_was assumed to have little meaning for the participants in the context of the examples (see the
"Less-Meaningful Label Solution" in Table 1c). The No Label group (N = 32) studied examples in
which the steps for finding the total frequency were not labeled (see the "No Label Solution” in
Table 1a).
. After studying the examples, participants solved six test problems. The first two required
s the use of the weighted average method for finding A (isomorphic to the example in Table 1).
These problems were given first so that participants would be able to immediately see that the prior
examples were relevant for solving the test problems. The third and fourth problems provided the
total frequency directly, thus A could be found by simply dividing the given total frequency by the
to;al number of trials. These problems were the problem in Table 2b and another problem
isomorphic to it. The fifth and sixth problems involved adding simple frequencies in order to find
the total frequency (see Table 2a for one of the problems). Participants were told not to look back
at the examples when solving the test problems.
Participants' written solutions were scored for whether they found 2 correctly.
Design. The independent variable was type of example solution studied (Meaningful
Label, Less-Meaningful Label, No Label), thus there were three groups in the experiment. The
dependent measure was performance on the six test problems, two of which were isomorphic to
the examples while the other four were novel.
Results
Participants were given a score of 1 for a given problem if they found A correctly and a

score of 0 otherwise. The scores for the two problems that were isomorphic to the training
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examples, Problems 1-2,'were summed, thus creating a score from 0-2 for performance on those
problems. Similarly, the scores for the four novel problems, Problems 3-6, were summed, thus
creating a score from 0-4 for performance on those problems.

As expected, all groups did quite well at finding A on test problems that were isomorphs to
the training examples (Problems 1-2). All participants except two, one in the Less-Meaningful
Label group and one in the No Label group, solved both isomorphs correctly.

There were significant differences among the three groups with respect to finding A in the

snovel test problems, F(2, 97) = 10.20, p = .0001, MS, = 1.82, with means of 3.44, 2.97, and
1.97 for the Meaningful Label, Less-Meaningful Label, and No Label groups, respectively. The

+most typical mistake that students made on these problems was to write in the solution area that not
enough information was given to solve the problem. Shaffer (1986) sequential Bonferroni
pairwise comparisons (familywise g = .05) indicated that both label groups outperformed the No
Label group, both ps < .05. No reliable performance difference was found between the two label
groups (p = .13).
Discussion

The transfer performance of the three training groups reveals that the presence of a label
facilitates performance on novel problems. These results are consistent with the hypothesis that a
label helps learners form a subgoal for the labeled steps. Evena relatively meaningless label
appears to promote subgoal learning, presumably because it serves as a cue to learners to retrieve
information from long-term memory in order to explain why a set of steps belong together.

It is proposed that a label aids transfer because it leads learners to group a set of steps and
then to self-explain why the steps go together. The result of this self-explanation process is the
subgoal. The results from Experiment 1, while demonstrating the relationship between labels and
improved transfer, did not directly test the hypothesized links of the model. Experiment 2 began a

more direct exploration of the links between labeling, grouping, and subgoal formation.
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Experiment 2

Experiment 2 examined the hypothetical connections among labeling, grouping, and
subgoal formation, as well as continuing to examine the relationship between labeling and transfer
performance, through the use of three tasks. The first task was a segmenting task in which
participants circled the steps in a worked-example that they believed went together. It was
hypothesxzed that participants whose examples provided a label for the set of steps for finding the
total frequency would be more likely to circle those steps as a unit, that is, to group those steps,
compared to the No Label participants who might be more likely to circle the entire set of steps for
finding A as a unit.

The second task required participants to provide a description of how to solve problems in

.the domain. It was hypothesized that if a person learns a subgoal, such as the subgoal to find a

- total, then he or she would be more likely to mention it in a description compared to a learner who

did not learn that subgoal. That is, the description would be more hierarchically organized
compared to one that simply listed steps.2

The third task was transfer performance on novel problems.

Thus, participants' segmentation performance, descriptions, and transfer performance were
used as converging measures of subgoal learning.

Method

Participants. Participants were 90 students recruited from an introductory psychology class
at the Georgia Institute of Technology who received course credit for their participation. None of
the students had taken a probability course prior to participating in the experiment.

Materials and Procedure. Participants studied the same cover sheet as in Experiment 1 and
were randomly assigned to one of three groups. The Meaningful Label (N = 30) and Less-
Meaningful Label (N = 30) groups studied the same three examples as the corresponding groups in
Experiment 1 (in which the steps for finding the total frequency were explicitly labeled) while the
No Label group (N = 30) studied the same examples used by the No Label group in Experiment 1.
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The solutions studied by the label groups were modified from Experiment 1's so that the
steps for finding the total frequency were on the same line as the rest of the steps for finding A,
thus making the solutions more visually similar to those studied by the No Label group (see Table
3 for an example). There were two reasons for the modification. The first was to reduce the
chance that any segmenting and transfer differences could be due to factors other than labeling.
The second was to guard against the possibility that participants in the label groups would circle a

series of steps simply because they were on their own line.

Insert Table 3 about here

Accompanying the third example were instructions asking participants to circle steps in the

solution that they felt formed a unit. The actual instructions were:

In the solution presented below, please circle the groups of steps
that you feel go together. For instance, suppose you were following
a recipe for cooking something. Perhaps the first three steps of the
recipe involved putting various ingredients into a bowl and the
fourth step involved stirring the ingredients with a spoon and the
fifth step involved using a blender to finishing the mixing. You
might draw a circle around the first three steps because they involve
"adding ingredients" and you might draw a circle around the the
fourth and fifth steps because they involve "blending the

ingredients."

After performing the segmenting task, participants were asked to describe how to solve

problems in the domain. The instructions were:
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Suppose you were going to teach someone how to solve Poisson
distribution problems of the types you have just studied. Please
describe the procedure or procedures you would give someone to

solve these problems. Please be as complete as possible.

After writing their descriptions, participants solved the same six test problems used in
Experiment 1. Participants were told not to look back at the examples when writing their
descriptions or solving the test problems.

Participants' segmenting performance was scored for whether they circled the steps for
finding the total frequency as a unit. Participants' explanations of how to solve problems in the
-domain were scored for two features: an explicit mention of trying to find the total and an explicit
‘mention of trying to find an éverage. Participants' written solutions to the test problems were
scored for whether they found A correctly.

Two raters independently scored the explanations and agreed on scoring 94% of the time.
Disagreements were resolvéd by discussion.

Design. The independent variable was type of example solutions studied (Meaningful
Label, Less-Meaningful Label, No Label), thus there were three groups in the experiment. The
dependent measures were segmenting performance, descriptions for how to solve the problems,
and transfer performance on the six test problems.

Predictions

Segmenting. If the label manipulation made learners more likely to group a set of steps,
then the label groups should tend to circle the steps (in the third example) for finding total
frequency as a single unit more often than No Label participants.

W@jﬂxﬁh@m Since it was hypothesized that the label groups -
would be more likely than the No Label group to learn the subgoal of finding a total, the label
groups should be more likely to mention the idea of finding a total in their descriptions of how to

solve Poisson problems. The Less-Meaningful Label group might mention the notion of finding
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"Q)" rather than finding the "total number" of things if there is some tendency by learners to repeat
the wording from examples. All groups were expected to mention finding A equally often since
this subgoal was always labeled in the examples.

Transfer. As in Experiment 1, the label groups were predicted to be more likely to find A
successfully on novel test problems since they involved new ways of finding the total frequency.
All groups were predicted to find A correctly in the isomorphic test problems since the same sets of

steps used in the examples could be applied to those problems.
“Results

Segmenting. As predicted, the label groups circled the steps for finding total frequency as
«a single unit more frequently than the No Label group, 12(2) = 6.57, p = .037 (see Table 4).
Descriptions of How to Solve Problems. As expected, there was no significant difference

among the groups in the frequency of mentioning the subgoal of finding A or the average, 12(2) =
0.69, p = .71 (see Table 4).

The frequency with which participants mentioned the subgoal of finding a total was
analyzed in two ways. In both analyses, participants in the Less-Meaningful Label group who
mentioned the notion of finding Q and also explicitly called this value a total were counted in Table
4 as having mentioned a total rather than Q.

The first analysis used the Total vs. Q vs. Neither breakdown in Table 4 and found a
significant difference among the groups, 12(4) =28.14, p <.0001. The percentages in Table 4
suggest that the label groups were more likely to mention the subgoal of finding a total or Q

-compared to the No Label group. In the second analysis the Less-Meaningful Label participants
who mentioned finding £ but did not also call it a total (N = 8) were placed in the same category as
those who explicitly mentioned a total. Thus, all participants were categorized into one of two
groups: those rﬁentioning a total or Q versus those mentioning neither. Once again there was a

significant difference between the groups in the frequency of mentioning total / , x2(2) = 14.52,

p = 0007.
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Insert Table 4 about here

Transfer. Test problems were scored as in Experiment 1.

All participants except one in the Meaningful Label group solved both isomorphic problems

) correctly. -

As predicted, there were significant differences among the three groups with respect to
finding A in the four novel test problems, F(2, 87) = 14.93, p =.017, MSe¢ = 3.50, with means of
3.07, 2.80, and 1.73 for the Meaningful Label, Less-Meaningful Label, and No Label groups,
respectively. Shaffer (1986) sequential Bonferroni pairwise comparisons indicated that both label

_ groups outperformed the No Label group, both ps < .05. No reliable performance difference was

found between the two label groups (p =.57).

Transfer to Novel Problems as a Function of Segmenting Performance. Participants who

circled the steps for finding total frequency as a single unit on the third training example (N = 50)

, outperformed those who did not circle those steps as a unit (N = 40) with respect to performance
on the novel test problems, F(1, 88) = 62.72, p < 0001, MSe =3.09, Ms =3.28 and 1.60,
respectively.

Mmmgné There was a significant difference in transfer
performance for novel problems as a function of whether participants mentioned finding a total (N

= 35), Q (N = 8), or neither (N = 47) in their descriptions (Total = 3.31, Q = 3.50, Neither =
1.79), E(2, 87) = 27.49, p = .0004, MSe =3.21. Pairwise comparisons indicated that
participants mentioning a total or Q did not differ from each other in transfer performance, and that
both groups outperformed those who did not mention either, both p's < .05 (although the small
number of participants mentioning only Q makes interpretations of comparisons with them

tentative).
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Participants who mentioned finding the average (N = 59) did not perform differently from
those who did not mention finding it (N = 31), E(1, 88) =0.56, p = .46, MSe = 3.75,Ms = 2.64
and 2.32, respectively.

Di .

The purpose of Experiment 2 was to determine whether more direct support could be found
for the hybothesized connections among labeling, grouping, and subgoal formation. The
segmenting results provide initial support for the link between labeling and grouping, and the
description results support the connection between labeling and subgoal formation. Finally, the
transfer results are consistent with the claim that subgoal formation aids transfer. In sum,

~converging evidence was found for a connection between labeling and subgoal formation.

While results from the first two experiments are consistent with the "label as grouping cue"
view, the generality of the subgoal formed as a function of the label is unclear. That is, a subgoal
that is formed in response to a label that makes mention of superficial features in the example might
become tied to those features. For instance, the subgoal formed by Meaningful Label participants
in the first two experiments might have been "find the total number of objects.” Conversely, a
subgoal formed in response to a more abstract label might be less likely to be tied to superficial
features. For instance, the subgoal formed by Less-Meaningful Label participants might have been
nfind the total." This latter subgoal is more general and closer to being formally correct.3 Most
participants in Experiment 2 who mentioned finding a total in their descriptions usually mentioned
the total in terms of objects or things. However, it is possible that this surface feature tie was
strongest for participants in the Meaningful Label condition.

One implication of forming a subgoal that is tied to superficial features is that the learner is
confusing superficial and structural features of the domain. A way to test this possibility is to
construct test problems that systematically manipulate the relationship between superficial and
structural features and observe the degree to which the features guide learners' performance.

For instance, Ross (1987, 1989) provided students with various types of probability

examples to study such as problems dealing with permutations and combinations. The permutation
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. examples involved people picking objects in a certain order. Because the problems involved
people picking objects, the number of objects in the problem provided the starting value for the
_ denominator in the permutation equation. Some of the test problems involved people being
assigned to objects. In these cases the number of people in the problem provided the starting value
for the denominator. However, students typically placed the number of objects in the
-denominator. That is, students in Ross' studies appeared to confuse the superficial features of
humans and objects with the domain-relevant features of choosing and chosen.

With respect to the experimental materials used in the present study, most learners, at least
at the college level, were assumed to be sufficiently sophisticated to generalize "total number of
briefcases." The generalization that might be formed though was unclear. One possibility was that
the generalization would be "total number of objects" if the examples involved humans using

- objects. Learners forming this generalization would be predicted to be more successful solving

- novel problems that require the total number of objects to be calculated in new ways compared to

. learners not forming this generalization. However, given that this generalization is still tied to a
superficial feature, objects, these learners might fail to solve correctly a novel problem that required

. the number of humans rather than objects for the total. Learners siudying examples with the less-

‘meaningful label who form the subgoal for finding a total might be less likely to have this subgoal

tied to a superficial feature. As a result, these Jearners would be less likely to make mistakes on

novel problems that switch the roles of humans and objects from their roles in the training

examples.

This possibility was explored in Experiment 3.

Experiment 3
In Experiment 3 participants were divided into the same groups as the first two
experiments. However, additional test problems were created in which the total frequency was

calculated using people rather than objects.
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Performance predictions varied as a function of training condition and type of test problem.
The first four test problems‘ were isomorphic to the training examples. The first pair involved
calculating the total number of objects in order to find A and the second pair involved calculating
the number of people. Participants were expected to solve the first pair with little difficulty.
Participants were also expected to solve the second pair successfully even though they
involved a reversal in the roles of humans and objects. The reason involves two types of
superficial similarity that seem most likely to affect performance. The first is the format of the
numbers in the examples and problems. For instance, consider the problem in Table 5a in which
the roles for humans and objects are reversed from the examples (such as the one in Table 1). In
~both cases there are a series of numbers (one through four for the example in Table 1 and one
through five in the problem in Table 5a) in which each number has another value associated with it. -
Each number is multiplied by its associated value and the products are added. This format
similarity allows a number-matching approach that has been shown to be a powerful factor in
transfer f)erformancé (Novick & Holyoak, 1991). In the preseht case, this number-matching
approach would produce the correct answer. The second type of superficial similarity is the roles
of humans and objects. They are reversed, compared to the examples, in the second pair of
isomorphs. This reversal could, in some circumstances, lead learners to place incorrect values into
an equation.
It was expected that the first type of similarity would drive performance because the
isomorphic problems do not supply obvious candidates to place in the equation other than those
“ produced via number-matching. Thus, regardless of whether a solver noticed or understood the
role-reversal, he or she would still be likely to follow a number-matching approach and thus,
produce the correct answer. For instance, for the problem in Table 5a, the learner could still
follow the training procedure of multiplying "1" by the number nearest it, "2" by the number
nearest it, and so on. This approach would also be consistent with prior observations that learners
tend to prefer to use learned sequences of steps when they are allowable in new problems even if

they are not optimal (cf. Luchins, 1942; Singley & Anderson, 1989, p 99).
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e The above approach would not work for the transfer problems that involve a change in

steps such as those in Tables 2 and 5b and 5¢c. There is no way to carry out the old set of steps to

~ solve these problems. Itis assumed that in the process of trying to decide how to solve these

problems, the learner will be more likely to notice features of the problem including which
numbers are associated with humans and which are associated with objects. Asa result, the solver
with a subgoal linked to superficial features might be more likely to want to find or calculate the
total based on objects even for the reversed-correspondence problems.

Based on the above analysis, predicted performance on the novel problems varied as a
function of group and role-correspondence. Four of the novel problems provided the total

frequency directly (such as the problem in Table 2b). Two of the problems involved objects

. providing the total event frequency and two involved humans providing the total event frequency

(see Table 5b for an example of the latter type). It was predicted that on the first pair of problems

- both label groups would outperform the No Label group. It was predicted that on the second pair

of problems Meaningful Label participants would be more likely than Less-Meaningful Label

- participants to incorrectly place the number of objects in the numerator of the fraction in order to

_find . This prediction was made because of the hypothesis that Meaningful Label participants

would be more likely than Less-Meaningful Label participants to associate objects with finding a
total. The value placed in the numerator of the fraction presumably represents the value that the
participant believes is the total.

The last four problems involved adding simple frequencies in order to find a total frequency
(such as the problem in Table 2a). Two of the problems involved objects being used to calculate
the total event frequency and two involved humans being used to calculate the total event frequency
(see Table 5c for an example of the latter type)- It was predicted that on the first pair of problems
the label groups would outperform the No Label group. The second pair of problems provided
two sets of numbers. The first set of numbers could be added to produce a total number of objects
and the second set could be added to produce a total number of people. If only one set was

provided, then participants would be more procedurally constrained (as with the isomorphs) and
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there would be less of a chance of finding a performance difference between Meaningful and Less-
Meaningful Label participants. It was predicted that on the second pair of problems the Meaningful
Label participants would be more likely than Less-Meaningful Label participants to make the
mistake of calculating a total using objects rather than humans.

Thus, for "reversed correspondence” novel test problems, it was predicted that Less-
Meaningﬁﬂ Label participants would show less of a decrement in performance than Meaningful

Label participants, relative to the groups' performance on the "same-correspondence” problems.

Insert Table 5 about here

Method
Participants. Participants were 90 students recruited from an introductory psychology class

at the Georgia Institute of Technology who received course credit for their participation. None of
the participants had taken a probability course prior to participating in the experiment.

Materials and Procedure. The conditions, training procedure, and cover sheet were
identical to those in the prior experiments and there were 30 participants in each condition. The
examples used the format created in Experiment 2 that made the visual appearance of the solutions
used in the label conditions more similar to the No Label solution.

A larger number of test problems (12) were used than in the previous experiments. The
first four test problems were isomorphic to the training examples. The first two involved objects in
the total frequency and the next two involved humans in the total frequency (see Table 5a for an
example of the latter set). The next four test problems involved the total frequency being given
directly in the problem. The first pair of the set involved objects in the total frequency (see Table
2b for an example) while the second pair involved humans in the total frequency (see Table 5b for
an example). The next four test problems involved calculating the total frequency by adding a set

of simple frequencies. - The first pair of the set involved objects in the total frequency (see Table 2a
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for an example) while the second pair involved humans in the total frequency (see Table Sc for an
example).

Participants' written solutions were scored for whether they found A correctly.

Design. The between-subjects variable was type of example solutions studied (Meaningful
Label, Less-Meaningful Label, No Label) and the within-subjects variable was correspondence of

.the roles of humans and objects in the test problems to their roles in the examples. The dependent
measure was performance on the 12 test problems.
Results and Discussion
As in the prior experiments, participants were given a score of 1 for a given problem if they
~ found A correctly and a score of 0 otherwise. The scores for Problems 1 and 2, the two problems
.that were isomorphic to the training examples and had the same role-correspondence of humans
and objects as the examples, were summed, thus creating a score from 0-2 for performance on
. those problems. Similarly, a score from 0-2 was calculated for the isomorphs that had a reversed
- role-correspondence of humans and objects (Problems 3 & 4). Finally, a score from 04 was
- calculated for the novel test problems with the same role-correspondence as the examples
,(Problems 5,6, 9, & 10) and a score from 0-4 was calculated for the novel test problems with a
.reversed role-correspondence (Problems 7, 8, 11, & 12).

As expected, all groups did quite well at finding A on test problems that were isomorphs to
the training examples regardless of whether the roles of humans and objects were reversed from
the examples. In fact, all participants solved each of these problems correctly.

Table 6 presents the groups' performance on the novel test problems as a function of
whether the problems involved the same or reversed role-correspondence of humans and objects
compared to the training examples. An analysis of variance was carried out on the performance on
the novel test problems with group as the between-subjects variable and role-correspondence (same
as examples vs. reversed from the examples) as the within-subject variable.

Consistent with the results from the prior experiments, there was a significant difference

among the three groups with respect to finding A on the novel test problems, F(2, 87) = 6.21,p=
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.003, MSe = 5.70. There was also an effect of role-correspondence indicating that problems with
reversed role-correspondence were solved less successfully than those with the same role-
correSpondencc as the examples, F(1, 87) = 26.56, p < .0001, ‘MSe = 0.86. Finally, there was a
significant interaction between group and role-correspondence, F(2, 87) =6.25,p= 003, MSe =
0.86, suggestmg that the correspondence manipulation affected the groups differently.

Separate analyses were carried out for each group companng performance on same and
reversed role-correspondence problems. The Shaffer (1986) procedure for providing a familywise

+q, of .05 for multiple comparisons was used. The Meaningful Label group showed a significant
decrease in performance on the reversed role-correspondence problems compared to the same role-

. correspondence problems, F(1, 29) = 19.12, p = .0001, MSe = 1.54, while the Less-Meaningful
Label and No Label groups did not show significant differences in performance on the problem
types (ps > .05).

Consistent with the above analysis, if performance on only the reversed role-
correspondence problems is considered, a significant effect of group is found, F(2.87)=5.33,p=
007, MSe = 3.41, with pairwise comparisons indicating that the Less-Meaningful Label group
outperformed the other groups (both ps < .04) but the Meaningful Label group did not outperform

the No Label group (p > .26).
It was predicted that a typical mistake made by the Meaningful Label participants in solving

the reversed role-correspondence problems would be to put or calculate a value for total number of
objects in the numerator. One way of examining the likelihood of making this mistake is to
examine performance on reversed role-correspondence problems by participants who solved the
same role-correspondence problems correctly. This approach would therefore consider only
participants who demonstrated the ability to transfer to problems that involved a change in
procedure relative to the training examples. Thus, mistakes on the reversed role-correspondence
problems would presumably be due to mapping problems rather than other sorts of transfer

difficulties.
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., Of the eight Meaningful Label participants who found A correctly in all four same role-
correspondence problems, five of them put objects in the numerator for finding A in the reversed
role-correspondence problems. Conversely, of the seven Less-Meaningful Label participants who
found A correctly in all four same role-correspondence problems, only two of them put objects in
the numerator for finding for finding A in the reversed role-correspondence problems. While these

, numbers are too small to achieve statistical significance, their pattern is consistent with the
interpretation that the Meaningful Label participants who were able to adapt the solution procedure
from the examples were more likely to be misled by superficial features compared to the analogous

Less-Meaningful Label participants.

Insert Table 6 about here

It is possible that the results from this experiment, rather than reflecting learners forming a
= subgoal associated with a superficial features, are due to learners including superficial features in
_ the steps for finding the total. The present results do not allow these possibilities to be clearly
disentangled. The data most relevant to examining this issue, the descriptions provided by
learners, tencied to contain a mention of objects at both the step level and at the subgoal level.
Nevertheless, the transfer results suggest that participants receiving meaningful labels associated
superficial features and mathematical roles more often than participants receiving less-meaningful

labels.

General Discussion
Students frequently learn a solution procedure as a series of steps with little or no higher-
leve! organization (Reed, Dempster, & Ettinger., 1985). As a result, while they can solve new
problems that involve the same steps as a previously-studied example, they have difficulty with
problems that require a change in the steps, even though the conceptual structure from the example

to the problem is preserved.
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A guiding assumption of the present research is that transfer performance will be enhanced
if a solution procedure is structured by subgoals and a method for achieving each one rather than
just a single linear set of steps for the entire procedure. Presumably there is a continuum of
structuredness depending on the number of subgoals into which a procedure is broken.

A splution strategy containing a single goal and a set of steps that occur in a predetermined
order to achieve that goal is similar to a rote strategy. Such a strategy is not particularly flexible in
terms of supporting transfer to novel problems. Nevertheless, Singley and Anderson (1989) point
-out that there are advantages to a rote procedure: it is more efficient in terms of number of rule
firings (if one were to model the procedure with production rules) and a rote procedure is often

“easier to learn and perform than a procedure that has more structure to it. Thus, it seems plausible
that learners will tend to form a rote procedure unless induced to do otherwise. Factors that may
lead learners to form more structured or hierarchical representations of procedures include their
ability to articulate goals that sets of steps are achieving (Chi et al., 1989), the learner's reasoning
style (e.g, Dufresneet al., 1992), and the type of training materials used (e.g., Catrambone, 1994;
Eylon & Reif, 1984).

Based on prior work involving instructional manipulations (e.g., Eylon & Reif, 1984;
Smith & Goodman, 1984), problem solving (Anzai & Simon, 1979), and categorization (e.g.,
Wattenmaker et al., 1986), I hypothesized that learners would be more likely to learn a subgoal
from an example if the steps for achieving that subgoal were labeled. A label was predicted to
make a learner more likely to group the set of steps and, through a self-explanation process, form a
subgoal that represented the purpose of the steps. The focus of the experiments was primarily on
the connection between labeling, subgoal formation, and transfer performance. The self-
explanation process was not directly examined.

Experiments 1 and 2 demonstrated that the presence of a label, rather than its semantic
content, can be sufficient to induce a learner to form a subgoal. Participants with less-meaningful
labels were able to solve transfer problems as successfully as participants with meaningful labels

and both groups transferred better than a No Label group. In addition, the segmentation task
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results were consistent with the claim that a label can aid grouping. These results, coupled with the
description data and transfer performance, support the hypothesized links between labeling,
grouping, and subgoal formation.
Experiment 3 demonstrated that the subgoal formed in response to a label may be less tied
-to superficial details of examples when the label does not reference those details. Learners
. receiving éxamples using less-meaningful labels transferred more successfully than other learners
to novel problems that altered, with respect to the examples, the role-correspondence between
superficial features and the solution procedure. This result, besides again supporting the view that
Jabels serve as a grouping cue, suggests that the generality of the procedure formed from examples
can be increased through the use of labels that do not contain references to superficial features of
examples.
A related explanation for the obtained results is that the Less-Meaningful Label participants
had to discover the purpose of the labeled steps as opposed to being told. The strategies or
- processes involved in determining the purpose of the steps might be related to the processes for
constructing new steps or modifying old steps to achieve the same purpose or subgoal (e.g.,
McDaniel & Schlager, 1990).
dividual Di s Fact i in
To be sure, the background of a learner plays a role in how likely he or she is to learn a
subgoal. Ausubel (1968, p 148-149) suggested that the value of "organizers" hinges upon the
learner possessing relevant background information so that the pieces of information being
organized already have some meaning. For instance, if a student learning mechanics is told that
one part of a solution procedure is to determine the components of force along the x and y axes,
this organizer for the subsequent steps will be of minimal use if the learner knows little or nothing
about coordinate systems or trigonometry.
With respect to the present study, a learner with a weak math background may look at a
series of addition and multiplication steps labeled with € and not group them or, in grouping them,

not realize that the steps calculate a total. This learner might be predicted to be less likely to form
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the subgoal of finding the total number of objects in this situation compared to one in which the
steps were labeled with "total number of briefcases owned." For this learner, meaningful labels
might produce better subgoal leaming since the extra domain information provided by a meaningful
label could help the learner make sense of the steps and to understand their purpose (even though
the resulting subgoal might have ties to superficial features). Conversely, a learner with a stronger
math background might be expected to recognize that the series of steps, when separated from the
other steps in the overall solution procedure through the use of a label such as £, calculates the
total. A label tied to'superficial features of the problem could influence this learner to form a less-
general subgoal.

Most students in the present study had at least two college-level math courses, thus it is
- reasonable that when cued with a label they could determine that a set of steps calculated a total.
No Label students were less likely to form the subgoal of finding a total, presumably because it
was more difficult for them to parse the solution procedure effectively. Thus, an interesting issue
to examine in future work would be the effects of the learners' background and the labels used in
examples on subgoal learning and transfer performance.
Other Types of Labels

While learners receiving the less-meaningful label were more likely to form representations
free of erroneous superficial features, it is interesting to consider what the nature of the
representations might be if the labels were meaningful, but unconnected to superficial details of the
examples. For instance, instead of containing the label "total number of briefcases owned,"
suppose an example contained the label "total frequency of the event." This label is formally
correct and not related to superficial details of the example. Perhaps this sort of label would
produce the best transfer since it would supply a formally correct concept, presumably cue the
grouping and self-explanation processes, and not provide a misleading tie-in to superficial features.
On the other hand, it is possible that this sort of label, because it has some meaning to the learner

(at least relative to Q), but is presumably also a relatively unfamiliar concept, could distract the

learner and compete with the grouping and self-explanation processes. This is an interesting
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empirical question that could be examined in future work and may be related to Sweller and
Cooper's (1985) conjecture that schemas are more likely to be learned when other processes do not
place an additional, distracting or concurrent Joad on working memory (see also Ward & Sweller,
1990). |

"Right" or "Basic" Lev ing?

. A solution procedure can be broken down into any number of subgoals and methods. It
is unlikely that, with respect to improving transfer, a particular breakdown could be defended in
any formal way either by an appeal to a particular cognitive architecture or to a task analysis unless
one restricts the set of problems to be considered in the domain so that the pool of potentially
useful subgoals can be identified by the researcher. Factors such as differences in learners'

- background and hypothesized working memory load as a function of a particular breakdown
would also need to be considered, although both could potentially be addressed by a cognitive

architecture that represents and tracks these factors.

Subgoals at varying levels of the solution structure hierarchy could affect transfer success

 to different degrees. For instance, in Experiment 2, transfer to novel problems was not predicted

by whether or not participants mentioned the goal of finding A in their descriptions; rather, it was
associated with mentioning the goal of finding a total. This may be because the goal to find A is
too high-level; it does not sufficiently constrain the learner's search for appropriate steps to modify
or create. It is intriguing to consider whether the inconsistency in the problem solving literature
concerning difficulties in procedural transfer may potentially be explained through a subgoal
"level" analysis.
Future Work

Besides exploring some of the issues raised above, an additional extension to the present
work would be to examine the link between grouping and self-explanation more directly than was
done in the present study. Approaches such as encouraging learners to talk out loud while

studying examples would provide a more direct test of the link between grouping and self-
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explanations. This approach would also allow an examination of whether factors other than labels
can affect grouping and whether grouping reliably leads to subgoal formation.

Another extension focuses on whether subgoals can be effectively communicated through
declarative statements or whether they are best learned through examples. Chi et al. (1989)
suggested that learners acquire knowledge through a self-explanation process that they might not
be able to acquire as effectively otherwise. Examples might provide the best environment for
learners io engage in the self-explanation process as well to integrate the resulting knowledge with
the domain-relevant knowledge they already possess (Chi, de Leeuw, Chiu, & LaVancher, 1994).

_Thus, it would be interesting, both pedagogically as well as for the development of models of

. Jearning, to examine how effectively subgoals are learned through examples versus declarative

text.
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Footnotes

1The Poisson distribution is often used to approximate binomial probabilities for events

pOter) = LA
occurring with some small probability. The Poisson equation is x!  whereiis

the average (the expected value) of the random variable X.

21t is possible that the segmentation task could affect performance on the description task
Eby leading participants to pay more attention to the steps than they might otherwise. However, a
prior study (Catrambone, in press) found a relationship between a similar labeling manipulation
and description performance without the intervening segmentation task.

3The most formal view would be "total frequency of the event.”
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A judge noticed that some of the 219 lawyers at City Hall owned more than one briefcase. She
counted the number of briefcases each lawyer owned and found that 180 of the lawyers owned
exactly 1 briefcase, 17 owned 2 briefcases, 13 owned 3 briefcases, and 9 owned 4 briefcases.
Use the Poisson distribution to determine the probability of a randomly chosen lawyer at City
Hall owning exactly two briefcases.

a.) No Label Solution:
_1(180) +2(17) + 3(13) + 4(9) _ 289
EX)= 219 T 219

= 1.32 = A = average number of briefcases owned per lawyer

ooy L]

x!

8-132)1.322)) _(2m1.74) _ 235
21 2

b.) Meaningful Label Solution:

Total number of briefcases owned = [1(180) + 2(17) + 3(13) + 4(9)] = 289

EX) = 289 = 1.32 = A = average number of briefcases owned per lawyer

219
oo e

)= (@71871-32)1.322)) _ (271)(1.74) _ 935
2! 2

c.) Less-Meaningful Label Solution:

Q =[1(180) + 2(17) + 3(13) + 4(9)] = 289

EX) = 289 = 1.32 = A = average number of briefcases owned per lawyer

219

PX=2

ey (712

-1.32y1 392
[(2.718719%)1.32%)] _ (-27)(21'74) = 235

P(X=2)= o
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Table 2
Sample Test Problems

a.) Total Frequency Calculated by Adding Simple Frequencies

Over the course of the summer, a group of 5 kids used to walk along the beach each day collecting
seashells 'We know that on Day 1 Joe found 4 shells, on Day 2 Sue found 2 shells, on Day 3
Mary found 5 shells, on Day 4 Roger found 3 shells, and on Day 5 Bill found 6 shells. Use the
Poisson distribution to determine the probability of a randomly chosen kid finding 3 shells on a

particular day.

Solution (not seen by participants):

E(X)=4+2+§+3+6 =259—=4.0=?»:averagenumberofshellsperkid

P(X=3) = =.195

[2.71849)4.0%)] _ (018)(64)
3! -6

b.) Total Frequency Provided Directly

A number of celebrities were asked how many commercials they made over the last year. The 20
celebrities made a total of 71 commercials. Use the Poisson distribution to determine the

probability that a randomly chosen celebrity made exactly 5 commercials.

Solution (not seen by participants):

E(X) = %—(1)- = 3.55 = A = average number of commercials per celebrity

[2.718355)(3.55))] _ (.029)(5638) _

5! 120 135

P(X=5) =
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Table 3

Meaningful Label Group:

1(180) +2(17) +3(13) +4(9) _ total number of briefcases owned _ 289

EX)= 219 219
= 1.32 = A = average number of briefcases owned per lawyer

)

P(X=2) = [(2.718-1:32)(1.32%)] _ (.27)(21 74) _ 235

2!

Less-Meaningful Label Group:
1(180)+2(17)+3(13)+4(9) _ 289
E(X)= 219 219 =219

= 1.32 = A = average number of briefcases owned per lawyer
A *
Py = EM) 1"‘ )

[(2.7181-32)(1.323)] _ (27)(1 74) _ 935
2!

P(X=2) =
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Percentage Circling
Total Frequency

Percentage Mentioning Finding
A

Total
Q

Neither

Group

Meaningful Less-Meaningful ~ No
Label Label Label
(N =30) (N =30) (N =30)

63 67 37
67 60 70
57 40 20
0 27 0
43 33 80
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Table 5

I iment
a.) Weighted-Average with Humans Providing Total Frequency
The 17 aprons ata large restaurant were each worn one or more times by the various chefs. Three
of the aprons were each used by exactly 1 chef, 7 of the aprons were used by 2 of the chefs, 4 of
“the aprons .were used by 3 of the chefs, 2 of the aprons were used by 4 of the chefs, and 1 of the
aprons was used by 5 of the chefs. Use the Poisson distribution to determine the probability of a

randomly chosen apron being worn by exactly 2 chefs.

“Solution (not seen by participants):

EX) = 1) +20) + 31(‘;) +4@+50) % = 2.47 = A = avg number of chefs per apron

[(2.718-247)(2.47%)] _ (.085)(6.1) _ 26
2! - 2 o

P(X=2) =

b.) Total-Frequency-Given-Directly with Humans Providing Total Frequency

Over a period of time at a certain video store, 243 people rented 104 different videos. Use the

Poisson distribution to determine the probability that a randomly chosen video was rented exactly 4

times.

Solution (not seen by participants):

E(X) = %g = 2.34 = A = average number of renters per video

(2.718234)(2.34%)] _ (.096)(29.98) _ |,

Pox=4) = 4! 24

(Table 5 continued on the next page)
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Table 5 (con't)

c.) Simple-Frequency with Humans Providing Total Frequency

An accbunting firm employing many accountants worked on a large number of tax returns and
used many types of tax forms. Four of the accountants were interviewed and it was found that one
worked on 3 tax returns that day, another worked on 9, a third worked on 5, and the fourth
worked on 6. In addition, of the many different types of tax forms used, it was found that one
type of tax form was used by 12 accountants at the firm, another type was used by 8 accountants, a
third type was used by 6 accountants, and a fourth type was used by 9 accountants. Use the
Poisson distribution to determine the probability of a randomly chosen type of tax form being

worked on by 7 different accountants.

Solution (not seen by participants):

E(X) = o12+8+6+9 = ELR = 8.75 = A = average number of accountants per form

4 4

[2.718875)(8.75))] _ (.00016)(3926960) _

7 B 5040 125

P(X=7) =
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i ts' Scores on Nov | a ion of Group and Correspondence
(Experiment 3)
Group
Meaningful ~Less-Meaningful No
Label Label Label

N =30) (N =30) (N =30) AVG
Same Correspondence 3.07 3.00 1.53 2.53
Reversed Correspondence 1.67 2.67 1.13 1.82
AVG 2.37 2.83 1.33 2.18

Note. Maximum possible score for any cell=4.
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